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We show that center vortices and center dominance are present in some regions of the phase diagram
of the SU(2) gauge-Higgs model, even though global center symmetry is broken, in this model, by
the matter field.

1 Introduction

It is well known that “permanent” confinement− in the sense of a non-zero asymptotic
string tension− is tied to the existence of a non-trivial, unbroken, global center symme-
try of the underlying gauge theory. On the lattice, this global symmetry amounts to the
invariance of the action upon multiplying all timelike links, at a fixed time, by the same
center element. If this symmetry is unbroken, the vanishingof the Polyakov line VEV in
an infinite spatial volume is guaranteed. If, instead, the global center symmetry is trivial,
then the asymptotic string tension vanishes.a In the case of an unbrokenZN center sym-
metry, the asymptotic string tension depends on the gauge group representation of the
Wilson loops only through theN -ality of the represention; this means that confining vac-
uum fluctuations must somehow contrive to disorder only the center degrees of freedom
of Wilson loop holonomies. These simple kinematical facts provide a strong motiva-
tion for the center vortex theory of confinement, which by nowhas abundant numerical
support in SU(2) and (to a somewhat lesser extent) SU(3) lattice pure gauge theory.1

The addition of matter fields in the fundamental color representation breaks global
center symmetry completely; there is no such symmetry in real QCD with its three gen-
erations of quarks. Confinement is then best described as “temporary”, i.e. there is a
linear potential for some finite range of quark separation, but at some point the static
quark potential goes flat. It is not obvious that the center vortex picture, which is moti-
vated by theN -ality properties of the non-vanishing asymptotic string tension, is relevant
to the temporary confinement situation.

In order to address the relevance of center vortices in the absence of global center sym-
metry, three approaches come to mind. First, one could investigate a gauge theory with
light fermions in the fundamental representation, such as real QCD. Here we would need
to implement dynamical fermions on the lattice, which is numerically very challenging.
A second approach is to study whether vortex degrees of freedom are somehow important
in a gauge theory whose gauge group has a trivial center and trivial first homotopy group,
the simplest case being the exceptional group G(2). This study is currently in progress,b

and the results will be reported at a later time. The third (and by far the simplest) proce-
dure is to add to the pure gauge theory a scalar field in the fundamental representation of
the SU(2) gauge group, thereby breaking the globalZ2 center symmetry explicitly. It is

aWe note that G(2) gauge theory is an example of, rather than anexception to, this general rule.
bIn collaboration with K. Langfeld, H. Reinhardt, and T. Tok.
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Figure 1: Schematic phase diagram of the SU(2) gauge-Higgs system. The solid line is a line of first-
order phase transitions. The dashed line represents non-thermodynamic transitions in some non-local order

parameter; the precise position of this line would depend onthe order parameter chosen.

well known that there is a region of the SU(2) gauge-Higgs phase diagram in which tem-
porary confinement holds, and there exists a linear potential up to some string-breaking
distance. The rest of the phase diagram is Higgs-like, and there is no linear potential at
any scale. We will concentrate on the temporary confinement region. The question is:
Do vortex degrees of freedom account for the linear potential, where this potential exists?
Are these degrees of freedom also sensitive to string breaking, and the leveling off of the
static potential? In this contribution we will report the results of a very preliminary study
of these issues.

2 SU(2) Gauge-Higgs Theory

In our numerical simulations, we use a version of SU(2) gauge-Higgs theory in which
the scalar field has a fixed (or “frozen”) modulus. For the SU(2) gauge group, the lattice
action can be written in the form

S = β
∑

plaq

1

2
Tr[UUU †U †] + γ

∑

links

1

2
Tr[φ†Uφ], (1)

whereφ is SU(2) group-valued. This theory was first studied numerically long ago by
Lang et al;2 the phase diagram is sketched in Fig. 1. There is a line of firstorder tran-
sitions terminating at aroundβ = 1.2. Above this line, the theory is Higgs-like, below
the line, temporary confinement prevails. The Fradkin-Shenker–Osterwalder-Seiler theo-
rem3,4 assures us that the temporary confinement and Higgs-like regions are continuously
connected; i.e. there are paths from one region to the other which do not encounter any
thermodynamic singularity. Of course, there can be non-thermodynamic transitions in
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Figure 2: Polyakov line values, atγ = 0.0.

non-local observables. In the variable modulus version of gauge-Higgs theory, it was
found that there is a line of center vortex percolation transitions, extending out from the
line of first-order transitions and continuing down toβ = 0.5 This is known as a Kertész
line. There are also symmetry-breaking transition lines. For example, in Coulomb gauge,
there exists a remnant global symmetry, which is unbroken inthe temporary confinement
region, and broken in the Higgs-like region6 (see also7,8). Again, this symmetry break-
ing coincides with the line of first-order transitions, and then extends toβ = 0. But
the remnant symmetry-breaking line and the percolation transition line do not coincide,
beyond the line of first-order thermodynamic transitions,9 and it seems likely in general
that different non-local order parameters will have abrupttransitions along different lines
in the phase plane, away from the first-order transition line.c

Our main interest is in the temporary confinement region, at aHiggs couplingγ where
the effects of screening are visible. For this preliminary study, we have chosen to work
mainly atβ = 2.2 andγ = 0.71. The first order transition, atβ = 2.2, occurs at about
γ = 0.9.

We begin with a measurement of the Polyakov line atβ = 2.2, on anL3×4 lattice. If
P (x) denotes the Polyakov line passing through the point{x, t = 0}, then the quantity
we measure is

〈P 〉 ≡

〈

1

L3

∣

∣

∣

∣

∣

∑

x

P (x)

∣

∣

∣

∣

∣

〉

. (2)

In the case of unbroken center symmetry, atγ = 0, we must find forβ = 2.2 andLt = 4
time extent that

〈P 〉 ∝

√

1

L3
. (3)

cIn particular, it would be interesting to locate the transition line of the Pisa monopole operator10 in this
coupling plane.
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Figure 3: Center-projected Polyakov line values, atγ = 0.0.

The relevant data, for lattice sizes up to203 × 4 is shown in Fig. 2. Fixing to direct
maximal center gauge, and carrying out center projection11 gives the result shown in Fig.
3. In both cases, the extrapolation to infinite volume is consistent with〈P 〉 = 0.

By contrast, atβ = 2.2 andγ = 0.71, we find that Polyakov lines on full and center-
projected lattices donot seem to extrapolate to zero, as seen in Figs. 4 and 5. This
establishes that atγ = 0.71 there is a small but detectable screening effect due to the
dynamical scalar field, and this effect can be seen both with the full and center-projected
lattice variables. This result is not really new; similar results for the variable modulus
gauge-Higgs theory have been reported previously.5

Now let us look at the correlator of center-projected Polyakov lines〈P (x)P (x + R)〉
atβ = 2.2, γ = 0.71, on a203 × 4 lattice. The data is shown in Fig. 6. The dashed line
is a best fit to the data, forR ≥ 2, by the function

f(R) = a + b exp[−4σR]. (4)

From the fit we finda = 0.0182, σ = 0.211. Not surprisingly,a is quite close to the
square of the VEV of the Polyakov line in center projection, which is〈Pcp〉 = 0.135 on
the203 × 4 lattice. In this way we see string-breaking, due to the dynamical matter field,
on the center-projected lattice using Polyakov lines.

Having established some sort of “center dominance” for Polyakov lines, lets turn to
spacelike Wilson loops. The first question to ask is whether P-vortices, identified via
maximal center gauge fixing plus center projection, actually locate center vortices in
unprojected SU(2) configurations in the temporary confinement region. Our standard
test is to check whetherW1/W0 → −1 in the large-loop limit, whereWn(C) represents
a Wilson loop, computed from unprojected link variables, with the restriction that loopC
is pierced byn P-vortices on the projected lattice This test seems to work out quite well
for the gauge-Higgs system atβ = 2.2, γ = 0.71, as seen in Fig. 7.
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Figure 4: Polyakov line values, atγ = 0.71.

Finally we look at the Creutz ratios of spacelike Wilson loops, shown in Fig. 8. Notice
that the center-projected Creutz ratios come out to≈ 0.21, which is just what we found
for σ extracted from the center-projected Polyakov line correlator. We also see that vortex
removal sends the string tension to zero, just as in the pure gauge case.
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Figure 5: Center-projected Polyakov line values, atγ = 0.71.
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Figure 6: Polyakov line correlator〈P (0)P (R)〉 on the center-projected lattice.

3 Conclusions

We have shown that in a coupling region where the scalar matter field has a small but
measurable effect on Polyakov lines, center dominance is still a feature of the gauge-
Higgs system. Vortex degrees of freedom are isolated, as in the pure gauge theory, via
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Figure 7: Ratio of “vortex-limited” Wilson loops.W1(C) is evaluated for loops pierced by a single P-vortex,
W0(C) is evaluated for loops which are not pierced by any P-vortices.
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Figure 8: Creutz ratios in the gauge-Higgs theory for unprojected, center-projected, and vortex-removed
configurations.

maximal center gauge fixing and center projection, and our standard tests on “vortex-
limited” Wilson loops (W1/W0) show that vortices on the projected lattice locate thick
center vortices in the unprojected configurations. We also find that the vortex degrees of
freedom account for both the string tension and the string breaking found in Polyakov
line correlators, while vortex removal removes the string tension (where it can be picked
out of the noise). These results supplement previous findings in the variable modulus
gauge-Higgs theory,5 where it was shown that vortices on the projected lattice percolate
in the temporary confinement region of the phase diagram, anddo not percolate in the
Higgs region.

The conclusion we draw from the SU(2) gauge-Higgs example isthat the vortex con-
finement mechanism, and center dominance, can operate even when global center sym-
metry is broken by matter fields, and the asymptotic string tension is zero. This, of course,
has important implications for the relevance of the vortex mechanism to real QCD. A re-
lated study of vortex degrees of freedom in G(2) lattice gauge theory is in progress, and
will be reported at a later time.
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