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We show that center vortices and center dominance are priessme regions of the phase diagram
of the SU(2) gauge-Higgs model, even though global centemnsstry is broken, in this model, by
the matter field.

1 Introduction

It is well known that “permanent” confinementin the sense of a non-zero asymptotic
string tension- is tied to the existence of a non-trivial, unbroken, globatter symme-
try of the underlying gauge theory. On the Iattice, this globymmetry amounts to the
invariance of the action upon multiplying all timelike lipkat a fixed time, by the same
center element. If this symmetry is unbroken, the vanisbirttpe Polyakov line VEV in
an infinite spatial volume is guaranteed. If, instead, tlodal center symmetry is trivial,
then the asymptotic string tension vaniskds the case of an unbrokefiy center sym-
metry, the asymptotic string tension depends on the gaumgpgiepresentation of the
Wilson loops only through th&/-ality of the represention; this means that confining vac-
uum fluctuations must somehow contrive to disorder only trdar degrees of freedom
of Wilson loop holonomies. These simple kinematical fagsvigle a strong motiva-
tion for the center vortex theory of confinement, which by g abundant numerical
support in SU(2) and (to a somewhat lesser extent) SU(dagbure gauge theory.

The addition of matter fields in the fundamental color repnégtion breaks global
center symmetry completely; there is no such symmetry ih@&D with its three gen-
erations of quarks. Confinement is then best described aptiary”, i.e. there is a
linear potential for some finite range of quark separatiart, &t some point the static
quark potential goes flat. It is not obvious that the centetexopicture, which is moti-
vated by theV-ality properties of the non-vanishing asymptotic striaggion, is relevant
to the temporary confinement situation.

In order to address the relevance of center vortices in therade of global center sym-
metry, three approaches come to mind. First, one couldtigegs a gauge theory with
light fermions in the fundamental representation, sucleas@QCD. Here we would need
to implement dynamical fermions on the lattice, which is ruically very challenging.
A second approach is to study whether vortex degrees ofdreeate somehow important
in a gauge theory whose gauge group has a trivial center iarad first homotopy group,
the simplest case being the exceptional group G(2). Thdystucurrently in progress,
and the results will be reported at a later time. The thirdi(ay far the simplest) proce-
dure is to add to the pure gauge theory a scalar field in theafuedtal representation of
the SU(2) gauge group, thereby breaking the gldzatenter symmetry explicitly. It is

“We note that G(2) gauge theory is an example of, rather thaxeaption to, this general rule.
®In collaboration with K. Langfeld, H. Reinhardt, and T. Tok.
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Figure 1: Schematic phase diagram of the SU(2) gauge-Higstera. The solid line is a line of first-
order phase transitions. The dashed line represents eomoldynamic transitions in some non-local order
parameter; the precise position of this line would depentherorder parameter chosen.

well known that there is a region of the SU(2) gauge-Higgssptéiagram in which tem-
porary confinement holds, and there exists a linear potargido some string-breaking
distance. The rest of the phase diagram is Higgs-like, amaktis no linear potential at
any scale. We will concentrate on the temporary confinemagjibn. The question is:
Do vortex degrees of freedom account for the linear potentizgere this potential exists?
Are these degrees of freedom also sensitive to string brgakind the leveling off of the
static potential? In this contribution we will report thesudts of a very preliminary study
of these issues.

2 SU(2) Gauge-Higgs Theory

In our numerical simulations, we use a version of SU(2) gadiggs theory in which
the scalar field has a fixed (or “frozen”) modulus. For the Slg@uge group, the lattice
action can be written in the form

S=8Y" %Tr[UUUT U+~ > %Tr[qﬁ Ug), (1)

plag links

where¢ is SU(2) group-valued. This theory was first studied nunadsidong ago by
Lang et al? the phase diagram is sketched in Fig. 1. There is a line ofdidgr tran-
sitions terminating at around = 1.2. Above this line, the theory is Higgs-like, below
the line, temporary confinement prevails. The Fradkin-8aerOsterwalder-Seiler theo-
rem>* assures us that the temporary confinement and Higgs-likenggre continuously
connected; i.e. there are paths from one region to the othmhvado not encounter any
thermodynamic singularity. Of course, there can be nomitbdynamic transitions in
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Figure 2: Polyakov line values, at= 0.0.

non-local observables. In the variable modulus versionanigg-Higgs theory, it was
found that there is a line of center vortex percolation fiteorss, extending out from the
line of first-order transitions and continuing downe= 0.° This is known as a Kertész
line. There are also symmetry-breaking transition lines.dxample, in Coulomb gauge,
there exists a remnant global symmetry, which is unbrokeéhariemporary confinement
region, and broken in the Higgs-like regib(see alsd’®). Again, this symmetry break-
ing coincides with the line of first-order transitions, ament extends t@ = 0. But
the remnant symmetry-breaking line and the percolatiomsttian line do not coincide,
beyond the line of first-order thermodynamic transiti@rend it seems likely in general
that different non-local order parameters will have abtrgotsitions along different lines
in the phase plane, away from the first-order transition fine

Our main interest is in the temporary confinement region Higgs couplingy where
the effects of screening are visible. For this preliminandyg, we have chosen to work
mainly ats = 2.2 andy = 0.71. The first order transition, &t = 2.2, occurs at about
v =0.9.

We begin with a measurement of the Polyakov ling at 2.2, on anL? x 4 lattice. If
P(x) denotes the Polyakov line passing through the pfint = 0}, then the quantity

we measure is
(P) = <% ZP(X) > 2

In the case of unbroken center symmetryy at 0, we must find forg = 2.2 andL, = 4
time extent that

1

(P) I3

(3)

“In particular, it would be interesting to locate the traiasitine of the Pisa monopole operatbiin this
coupling plane.
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Figure 3: Center-projected Polyakov line valuesy at 0.0.

The relevant data, for lattice sizes up20® x 4 is shown in Fig. 2. Fixing to direct
maximal center gauge, and carrying out center projettigives the result shown in Fig.
3. In both cases, the extrapolation to infinite volume is stest with(P) = 0.

By contrast, afy = 2.2 andvy = 0.71, we find that Polyakov lines on full and center-
projected lattices dmot seem to extrapolate to zero, as seen in Figs. 4 and 5. This
establishes that at = 0.71 there is a small but detectable screening effect due to the
dynamical scalar field, and this effect can be seen both Wélill and center-projected
lattice variables. This result is not really new; similasukts for the variable modulus
gauge-Higgs theory have been reported previously.

Now let us look at the correlator of center-projected Pobyalines(P(z)P(xz + R))
at3 = 2.2, v = 0.71, on a20® x 4 lattice. The data is shown in Fig. 6. The dashed line
is a best fit to the data, far > 2, by the function

f(R) = a+ bexp[—40oR). 4

From the fit we finda = 0.0182, ¢ = 0.211. Not surprisingly,a is quite close to the
square of the VEV of the Polyakov line in center projectiomjah is (P,,) = 0.135 on
the20® x 4 lattice. In this way we see string-breaking, due to the dyinahmatter field,
on the center-projected lattice using Polyakov lines.

Having established some sort of “center dominance” for &ay lines, lets turn to
spacelike Wilson loops. The first question to ask is whethgoifices, identified via
maximal center gauge fixing plus center projection, aciulaitate center vortices in
unprojected SU(2) configurations in the temporary confingnnegion. Our standard
test is to check whethé#’; /W, — —1 in the large-loop limit, wheréV,,(C') represents
a Wilson loop, computed from unprojected link variableghvine restriction that loop’
is pierced byn P-vortices on the projected lattice This test seems to wotlkqoite well
for the gauge-Higgs system @at= 2.2, v = 0.71, as seen in Fig. 7.
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Figure 4: Polyakov line values, at= 0.71.
Finally we look at the Creutz ratios of spacelike Wilson Ispgghown in Fig. 8. Notice
that the center-projected Creutz ratios come out t0.21, which is just what we found

for o extracted from the center-projected Polyakov line cotoelaVe also see that vortex
removal sends the string tension to zero, just as in the paugeaycase.
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Figure 5: Center-projected Polyakov line valuesy at 0.71.
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Figure 6: Polyakov line correlatd®(0) P(R)) on the center-projected lattice.

3 Conclusions
We have shown that in a coupling region where the scalar migtd has a small but

measurable effect on Polyakov lines, center dominancéllisdeature of the gauge-
Higgs system. Vortex degrees of freedom are isolated, awiptre gauge theory, via
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Figure 7: Ratio of “vortex-limited” Wilson loops#/1 (C) is evaluated for loops pierced by a single P-vortex,
Wo(C) is evaluated for loops which are not pierced by any P-vastice
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Figure 8: Creutz ratios in the gauge-Higgs theory for urgntgd, center-projected, and vortex-removed
configurations.

maximal center gauge fixing and center projection, and andsird tests on “vortex-
limited” Wilson loops {¥1/W;) show that vortices on the projected lattice locate thick
center vortices in the unprojected configurations. We afmbtfiat the vortex degrees of
freedom account for both the string tension and the strimging found in Polyakov
line correlators, while vortex removal removes the striegsion (where it can be picked
out of the noise). These results supplement previous fisdimghe variable modulus
gauge-Higgs theory,where it was shown that vortices on the projected latticeqiate

in the temporary confinement region of the phase diagramdanabt percolate in the
Higgs region.

The conclusion we draw from the SU(2) gauge-Higgs exampleaisthe vortex con-
finement mechanism, and center dominance, can operate éanglobal center sym-
metry is broken by matter fields, and the asymptotic stringite is zero. This, of course,
has important implications for the relevance of the vortechanism to real QCD. A re-
lated study of vortex degrees of freedom in G(2) lattice gatigory is in progress, and
will be reported at a later time.
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