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Abstract
This article reviews positive and negative time delays in various processes of
classical and quantum physics. In the beginning, we demonstrate how a time-
shifted response of a system to an external perturbation appears in classical
mechanics and classical electrodynamics. Then we quantify durations of
various quantum mechanical processes. The duration of the quantum tunneling
is studied, and an interpretation of the Hartmann paradox is suggested. Time
delays and advances appearing in the three-dimensional scattering problem on a
central potential are considered. We then discuss delays and advances appearing
in quantum field theory and after that we focus on the issue of time delays and
advancements in quantum kinetics. We discuss problems of the application of
generalized kinetic equations in simulations of the system relaxation toward
equilibrium and analyze the kinetic entropy flow. Possible measurements of
time delays and advancements in experiments similar to the recent OPERA
neutrino experiment are also discussed.

(Some figures may appear in colour only in the online journal)
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1. Introduction

Many definitions of time, as a measure of the duration of a process, are possible in classical
mechanics. In principle, for the measurement of a time duration any process is suitable which
occurs at a constant pace. Naively thinking, the response of a system to an external perturbation
should be delayed in accordance with the causality principle. However, it is not always the case.
There may arise both delays and advancements (negative time delays) in system responses
without contradiction with causality.

Time delays and possible time advances in quantum mechanical phenomena have been
extensively discussed in the literature; see [1–12] and references therein. In spite of this
many questions still remain not quite understood. Worth mentioning is the Hartmann effect
[13], that the transition time of a quantum particle through a one-dimensional (1D) barrier
is seemingly independent of the barrier length for broad barriers. This causes apparent
superluminal phenomena in quantum mechanical tunneling. Many, at first glance, supporting
experiments with single photons, classical light waves and microwaves have been performed,
see [14–18] and references therein. Different definitions of time delays, such as the group
transmission time delay δtT, the group reflection time delay δtR, the interference time delay δti,
the dwell time td, the sojourn time tsoj and some other quantities have been introduced to treat
the problem. All these time-scales suffer from the Hartmann effect and are at odds with the
natural expectation that the tunneling time should be proportional to the length of the barrier.
A re-interpretation consistent with special relativity suggested in [8] is that these times should
be treated as the life-times of the corresponding wave packets rather than the traveling time.
If so, the so-far-performed experiments measured an energy dissipation at the edges of the
barrier rather than particle traveling time.

In addition to the mentioned time delays other relevant time quantities were introduced
and the differences between the averaged scattering time delay δts and the Wigner scattering
time delay δtW were discussed in [3, 19, 20]; see also [4–6] and references therein. Based on
these analyses the authors of [20] argued that kinetic simulations describing the relaxation of
a system, first, toward the local equilibrium and, then, toward the global one must account
for delays in scattering events consistent with mean fields acting on particles, in order to
model consistently the thermodynamic properties of the system. For practical simulations, as
the relevant relaxation time they suggested to use the scattering time delay δts, as it follows
from the phase shift analysis, rather than the collision time tcol, as it appears in the original
Boltzmann equation. A number of BUU (Boltzmann–Uehling–Uhlenbeck) simulations of
heavy-ion collision reactions were performed using this argumentation; see [21] and references
therein.

The appropriate frame for the description of non-equilibrium many-body processes is
the real-time formalism of quantum filed theory developed by Schwinger, Kadanoff, Baym
and Keldysh [22–25]. A generalized kinetic description of off-mass-shell (virtual) particles
has been developed based on the quasiclassical treatment of the Dyson equations for non-
equilibrium systems, see [24, 26–31]. This treatment assumes the validity of the first-order
gradient approximation to the Wigner-transformed Dyson equations. As it is ordinarily sought,
the gradient approximation is valid if the typical time–space scales are much larger than the
microscopic scales, such as 1/EF and 1/pF for slightly excited Fermi systems, where EF is
the Fermi energy and pF is the Fermi momentum. As the result, a quantum kinetic equation
is derived for off-mass-shell particles, for which the energy and momentum are not connected
by any dispersion relation. We call this generalized kinetic equation the Kadanoff–Baym (KB)
equation. Among other terms, this equation contains the Poisson-bracket term, the origin
of which has not, for a long time, been quite understood. Botermans and Malfliet in [32]
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suggested replacing the production rate in that Poisson-bracket term by its approximate quasi-
equilibrium value. This allowed the simplification of the KB equation for near equilibrium
configurations. The resulting form of the kinetic equation is called the Botermans–Malfliet
(BM) form. It is argued that the BM replacement does not spoil the validity of the first-order
gradient approximation. The so-called�-derivable self-consistent approximations in quantum
field theory were introduced by Baym in [33] for quasi-equilibrium systems. His derivation was
then generalized to an arbitrary Schwinger–Keldysh contour in [34]. Reference [35] developed
the self-consistent treatment of quantum kinetics. References [36, 37] demonstrated that the
KB kinetic equation is compatible with the exact conservation of the Noether 4-current and
the Noether energy–momentum, whereas the Noether 4-current and the Noether energy–
momentum related to the BM form of equation are conserved only approximately, up to
zeroth gradients. Fulfilment of the conservation laws is important in practical simulations of
dynamical processes. For example, in kinetic simulations of heavy-ion collisions the gradient
approximation may not work, at least on an initial stage of the expansion of the fireball. In this
case the KB form of the kinetic equation should be preferable compared to the BM one due to
inherent exact conservation laws for the Noether quantities in the former case. However, up to
now the simulation scheme, the so-called test-particle method, has been realized in application
to heavy-ion collisions only for the BM form of the kinetic equation; see [21, 38, 39]. The
relaxation time arising in the kinetic equation presented in the BM form is the scattering time
delay, δts, rather than the average collision time tcol, as it appears in the original KB equation.
Since δts can be naturally interpreted in terms of the virial expansion [20], this was considered
as an argument in favor of the BM form of the kinetic equation.

Recent work [40] suggested a non-local form of the quantum kinetic equation, which
up to second gradients coincides with the KB equation and up to first gradients, with the
BM equation. Thus, the non-local form keeps the Noether 4-current and Noether energy–
momentum conserved at least up to first gradients. The second advantage of the non-local
form is that it allows interpretation of the mentioned difference in the Poisson-bracket terms
in the KB and BM equations, as associated with space–time and energy–momentum delays
and advancements. Also the non-local form of the kinetic equation permits, in principle, to
develop a test-particle method, similar to that used for the BM form of the kinetic equation.

In this review we study problems related to determination of time delays and advancements
in various phenomena. In section 2 we discuss how time delays and lesser time advancements
arise in the description of oscillations in classical mechanics and in classical field theory of
radiation. In section 3 we consider time delays and advancements in 1D quantum mechanical
tunneling and in the scattering of particles above the barrier. The problem of an apparent
superluminality in the tunneling (the Hartmann effect) is considered and a solution of the
paradox is suggested. In section 4 we consider time delays and advancements in the three-
dimensional (3D) scattering problem. Then in section 5 we introduce the non-equilibrium
Green’s function formalism and show that not only space–time delays but also advancements
appear in the Feynman diagrammatic description of quantum processes within quantum field
theory. In section 6 we focus on the quasiclassical description of non-equilibrium many-body
phenomena. We introduce a gradient expansion scheme and arrive at a set of equations for
the kinetic quantities, which should be solved simultaneously. The kinetic equation for the
Wigner density is presented in three different forms, the KB, the BM and the non-local form.
We discuss time delays and advancements, as they appear in the non-local form of the kinetic
equation (and in the KB equation equivalent to it up to the second-order gradient terms)
and consider their relation to those quantities, which arise in the quantum mechanical 1D
tunneling, in motion above the barrier and in 3D scattering. To demonstrate that all three
forms of the kinetic equation are not fully equivalent in the region of a formal applicability
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of the first-order gradient expansion we calculate the kinetic entropy flow in all three cases
and explicate their differences. Then we find some solutions for all three forms of the kinetic
equation, raising the question of the applicability of the gradient expansion in the description
of the relaxation of a slightly non-equilibrium system toward equilibrium. Based on this
discussion we pose the question of the applicability of the BM kinetic equation for simulations
of violent heavy-ion collisions. A possible explanation for the appearance of instabilities for
superluminal virtual particles is also discussed. In section 7 we discuss the measurements of
time delays and advancements. The origin of an apparent superluminality, as might be seen in
experiments similar to those performed by the OPERA and MINOS neutrino collaborations
[41, 42] is discussed. In appendix A we present the formulation of the virial theorem in classical
mechanics in terms of the scattering time delay. Appendix B demonstrates the derivation of
some helpful relations between wave functions. Appendix E shows the relations between
contour and matrix quantities. In appendix F we discuss the H theorem and demonstrate the
minimum of the entropy production at the system relaxation toward the equilibrium.

Starting from section 5 we use units � = c = 1. Where necessary we recover c and �.

2. Time shifts in classical mechanics and in classical field theory

In this section we introduce a number of time characteristics of the dynamics of physical
processes. We demonstrate how a time-shifted response of a system to an external perturbation
appears in classical mechanics and classical electrodynamics. We show that there may arise
both delays and advancements in the system response.

2.1. Time shifts in classical mechanics

Let us introduce some definitions of time, as a measure of the duration of a process in classical
mechanics, which will further appear in the quantum mechanical description.

To measure a time duration, any process which occurs at a constant pace is suitable. For
example, to measure the time of motion one can use a camel moving forward with a constant
velocity �v, then t = l/v, where l � N l0 is the distance passed by the camel, N is the number
of its steps; l0 is the step size. Such a simple measurement of time (in camel steps) is certainly
inconvenient, because the distance between initial and final camel positions can be very large
for large times. To overcome the problem one may use a ‘mechanical camel’ moving around
in a circle with a constant angular velocity or linear speed. Our watches are constructed in
such a manner, where the clock hand takes the role of the camel. More generally, for time
measurement one may use any periodic process described by an ideal oscillator (e.g. one may
use the atomic clock). Then time is measured in a number of half-periods P/2 of the oscillator
motion.

Another way of measuring time is to exploit the particle conservation law. One of the
oldest time-measuring devices constructed in such a manner is a clepsydra, or a water clock.
Its usage is based on the principle of the conservation of an amount of water. Water can of
course be replaced by any substance, which local density ρ(�r, t) obeys the continuity equation
∂ρ/∂t + div�j = 0, where �j = ρ �v is a 3D flux density, dependent on the local velocity �v(�r, t)
of an element of the substance. Now, if we take a large container of volume V with a hole
of area S, the time passed can be defined as the ratio of the amount of substance inside the
container to the flux draining out of the container through the hole:

t (cl)
d =

∫
V
ρ d3r

/∣∣∣∣ ∫
S

�j(ρ) d�s

∣∣∣∣. (2.1)
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We will call this quantity a dwell time since a similar definition of a time interval is used in
quantum mechanics in stationary problems.

In the 1D case the time particles dwelling in some segment of the z-axis open at the ends
z1 and z2, through which particles flow outside the segment, can be found as

t (1,cl)
d =

∫ z2

z1
ρ dz

| j(z1)+ j(z2)| , (2.2)

where ρ(z) is the particle density and j(z) = v(z)ρ(z) is a 1D flux density. Obviously, for a
particle flux from a hole at z = z2 (at j(z1) = 0) with constant density ρ and constant velocity
v we then have t (cl)

d = l/v with l = z2 − z1. If ρ depends on t, the definitions (2.1), (2.2)
become inconvenient, since t (cl)

d is then a nonlinear function of t.
Another relevant time-quantity reflecting the temporal extent of a physical process can be

defined as follows. Consider the motion of a classical particle in an arbitrary time-dependent
1D potential U (z, t). The particle trajectory is described by the function z(t) ∈ C, where C is
the space region allowed for classical motion. Let the particle move for a time τ , then a part
of this time, which the particle spends within an interval [z1, z2] ∈ C, is given by the integral

t (cl)
soj (z1, z2, τ ) =

∫ τ

0
dtθ (z(t)− z1)θ (z2 − z(t)) =

∫ τ

0
dt
∫ z2

z1

dsδ(s − z(t)). (2.3)

Such a temporal quantity can be called classical sojourn time. What is notable is that this time
has a well-defined exact counterpart in quantum mechanics.

Now consider particle motion in a stationary field U (z). Using the equation of motion

dz/dt = v(z; E ), where v(z; E ) =
√

2
m (E − U (z)) is the particle velocity and E, the energy,

for an infinite motion we can recast the sojourn time (2.3) as

t (cl)
soj (z1, z2, τ ) =

∫ z(τ )

z(0)

dz

v(z; E )

∫ z2

z1

ds δ(s − z) =
∫ min{z2,z(τ )}

max{z1,z(0)}

dz

v(z; E )
(2.4)

provided the interval [z1, z2] overlaps with the interval [z(0), z(τ )]. If the particle motion is
infinite one can put τ → ∞. For finite motion the integral would diverge in this limit and τ
must be kept finite. It is convenient to restrict τ by the half of period τ � P/2, which depends
on the energy of the system and is given by [43]

P(E ) = 2
∫ z2(E )

z1(E )

dz

v(z; E )
, (2.5)

where now z1,2(E ) are the turning points, given by equation U (z1,2) = E. For τ > P/2 the
sojourn time contains a trivial part, which is a multiple of the half-period, t (cl)

soj (z1, z2, τ ) =
n P/2 + t (cl)

soj (z1, z2, τ − n P/2), where n is an integer part of the ratio 2 τ/P.

Following (2.4), the classical sojourn time t (cl)
soj (z1, z, τ (z1, z)) can be rewritten through

the derivative of the shortened action

t (cl)
soj (z1, z, τ (z1, z)) = ∂Ssh(z1, z,E;U )

∂E
,

Ssh(z1, z,E;U ) =
∫ z

z1

p dz =
∫ z

z1

√
2 m (E − U (z)) dz. (2.6)

Taking z = z2 we get

t (cl)
soj (z1, z2,P/2) = P/2, (2.7)

provided z1,2 are the turning points.
For an infinite motion with E > maxU (z), following (2.4) we can define a classical

sojourn time delay/advance for the particle traversing the region of the potential compared to
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a free motion as

δtcl
soj = t (cl)

soj (−∞,∞,∞;U )− t (cl)
soj (−∞,∞,∞;U = 0)

=
√

m

2

∫ +∞

−∞

(
1√

E − U (z)
− 1√

E

)
dz. (2.8)

Calculating t (cl)
soj (−∞,∞,∞) we extend the lower limit in the time integration in (2.3) to

−∞. The classical sojourn time delay/advance (2.8) for infinite motion can then be rewritten
as

δt (cl)
soj = ∂(Ssh(E;U )− Ssh(E; 0))

∂E
, (2.9)

where Ssh(E;U ) = ∫ +∞
−∞ p dz.

The definition (2.9) of the time delay is similar to the definition of the group time delay
δtgr appearing in consideration of waves in classical and quantum mechanics. In the latter case
the �-function of semiclassical stationary motion is expressed as � ∝ eiSsh(z1,z,E;U )/�. With
the help of a classical analogue of the phase shift,

�δ(cl)(z1, z,E;U ) ≡ Ssh(z1, z,E;U ), (2.10)

we now introduce the group time

t (cl,1D)
gr (z1, z,E;U ) ≡ �

∂δ(cl)(z1, z,E;U )

∂E
. (2.11)

Thus,

t (cl,1D)
gr (z1, z2,E;U ) = �

∂δ(cl)(z1, z2,E;U )

∂E
= P/2, (2.12)

provided z1,2 are turning points.
For 1D infinite motion, introducing δ(cl) = Ssh(−∞,∞,E;U )/� ≡ Ssh(E;U )/� and

δ
(cl)
free = Ssh(E; 0)/�, we can write the group time delay and, respectively, the free motion as

δt (cl,1D)
gr = �

∂
(
δ(cl) − δ(cl)

free

)
∂E

= δt (cl,1D)
soj . (2.13)

Moreover, one may introduce another temporal scale—phase time delay,

δt (cl)
ph = �δcl/E. (2.14)

Also, from equation (2.8) we immediately conclude that in one dimension the time shift is
negative (advance), δtcl

soj < 0, for an attractive potential U < 0 and it is positive (delay) for a
repulsive potential U > 0.

Extensions of the definitions of the full classical sojourn time and classical sojourn time
delay/advance concepts to the 3D motion are straightforward. In analogy to equation (2.3) the
time a particle spends within a 3D volume 	 during the time τ can be defined as

t (cl)
soj (	, τ ) =

∫ τ

0
dt
∫

�r∈	
d�rδ
(
�r − �r(t)

)
. (2.15)

Consider now the radial motion of a particle in a central stationary field decreasing
sufficiently rapidly with the distance from the center. Using the symmetry of the motion
toward the center and away from it, we can choose the moment t = 0, as corresponding to
the position of the closest approach to the center. Then for times t → ±∞ the particle moves
freely and its speed is v∞. We can define a classical time delay by which the free particle
motion differs from the motion in the potential as

δt (cl)
W = 2 lim

t→∞(t(r,U )− r(t,U = 0)/v∞), (2.16)
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where r(t,U = 0) is the particle’s radial coordinate for free motion. Factor 2 counts forward
and backward motions in radial direction. We will call this time delay the Wigner time delay.
One can see that this time is equivalent to a classical sojourn time delay, δt (cl)

W = δt (cl)
soj , defined

similarly to equation (2.8). Using the virial theorem for classical scattering on a central
potential U (r) [44], one may show that (see appendix A)

δt (cl)
soj = δt (cl)

W = 1

E

∫ ∞

0
(2U (r(t))+ r(t)U ′(r(t))) dt, (2.17)

where the integration goes along the particle trajectory r(t). The result holds for potentials
decreasing faster than 1/r. We see that in the 3D-case there is no direct correspondence between
the signs of the potential and the time shift δt (cl)

soj . For a power-law potential U = a/rα , α > 0,

we have a delay, δt (cl)
W > 0, for a(2 − α) > 0, and we have an advance, δt (cl)

W < 0, for
a(2 − α) < 0. For α = 2 there is no time shift compared to the free motion.

Now, using that in a central field [43]

t(r) =
∫ r

r0

dr

vr
, vr =

√
v2∞ − 2U (r)

m
− M2

m2r2
, (2.18)

where r0 = r(vr = 0) is the turning point3, and M is the angular momentum, we can rewrite
the limit in equation (2.16) as

lim
r→∞(t(r)− r/v∞) = lim

r→∞

(∫ r

r0

dr

vr
− r

v∞

)
. (2.19)

For a central potential the shortened action is Ssh(r0, r,E,U ) = ∫ r
r0

pr dr, Ssh(E,U ) =∫∞
r0

pr dr, and the classical analogue of the phase shift is given by

�δcl(v∞,M)− �δcl(v∞,M,U = 0) = lim
r→∞

[∫ r

r0

pr dr −
∫ r

r0

pr(U = 0) dr

]
, pr = mvr.

(2.20)

Then, similarly to equation (2.9) we can define the group time delay, as the energy derivative
of the phase acquired during the whole period of motion (forward and backward), and from
comparison with equation (2.19) we have

δt (cl,3D)
gr ≡ 2�

∂
(
δ(cl) − δ(cl)

free

)
∂E

= δt (cl)
W . (2.21)

As we see, compared to the 1D case (2.13) (where integration limits in the expression for Ssh

are from −∞ to ∞), in the 3D case (2.21) for the delay in the radial motion there appears
an extra factor 2. In section 3 we shall see that such a delay corresponds to divergent waves,
whereas scattered waves are characterized by half the delay, as it is in 1D classical motion.
Also, in the 3D case one may introduce a phase time-scale given by the same expression
(2.14), as in the 1D case.

Moreover, for systems under the action of external time-dependent forces there appear
extra time-scales characterizing dynamics. Above we considered undamped mechanical
motion; below we study damped motion. We consider several examples of such a kind,
when mechanical trajectories can be explicitly found. We introduce typical time-scales and
demonstrate possibility, as time delays of the processes, as time-advancements.

3 If there is no turning point, one puts r0 = 0.
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2.1.1. Anharmonic damped 1D-oscillator under the action of an external force: general
solution. Consider a particle with a mass m performing a 1D motion along the z-axis in a
slightly anharmonic potential under the action of an external time-dependent force F(t) and
some non-conservative force (friction) leading to a dissipation. The equation of motion of the
particle is

z̈(t)+ E2
Rz(t)+ �ż(t)+�z2(t) = 1

m
F(t), (2.22)

where ER is the oscillator frequency and � > 0 is the energy dissipation parameter. The
anharmonicity of the oscillator is controlled by the parameter �. Within the Hamilton or
Lagrange formalism, equation (2.22) can be derived, e.g., with the help of the introduction of
an artificial doubling of the number of degrees of freedom, as in [45–47], or if one assumes
that the oscillator is coupled to the environment (‘a viscous medium’), as in [48]. To establish
a closer link to the formalism of the quantum field theory, which we will pursue in section 5,
we introduce the dynamical variable (the ‘field’) φ(t) = m z(t) obeying the equations

−Ŝt φ(t) = J(t), −Ŝt = d2

dt2
+ E2

R + � d

dt
, J(t) = F(t)− 1

m
�φ2(t), (2.23)

with the differential operator Ŝt and the source term J, which depends nonlinearly on φ and
on the external force F(t).

In absence of anharmonicity, � = 0, solution of equation (2.22) can be written as

z(t;� = 0) = z0(t)−
∫ +∞

−∞
dt ′G0(t − t ′)w(t ′), w(t ′) = 1

m
F(t ′), (2.24)

where the Green’s function G0(t − t ′) satisfies the equation

ŜtG0(t − t ′) = δ(t − t ′). (2.25)

The quantity z0(t) in equation (2.24) stands for the solution of the homogeneous equation
Ŝt z(t) = 0 with initial conditions of the oscillator, namely, its position z0(0) and velocity
ż0(0) (both are encoded in the oscillation amplitude a0 and the phase α0):

z0(t) = a0 exp
(− 1

2�t
)

cos(ωR t + α0), (2.26)

whereωR =
√

E2
R − 1

4�
2. Two time-scales characterize this solution: the time of the amplitude

quenching—the decay time,

t (cl)
dec = 2/� (2.27)

and the period of oscillation P = 2π
ωR

, see equation (2.5). The value t (cl)
dec describes the decay of

the field (φ = mz variable). The quantity φ2 is damped on the time scale which is twice shorter
than t (cl)

dec . Note that in quantum mechanics we ordinarily consider damping of the density
variable, |�|2. The definition of the sojourn time (2.4) provides a relation for the period
t (cl)
soj (z0(P/2), z0(0), τ = P/2) = P/2. The phase time shift δtph = α0/ωR can be eliminated

by the choice of the initial time moment.
In the Fourier representation equation (2.24) acquires the simple form

z(ω;� = 0) = z0(ω)− G0(ω)w(ω), (2.28)

where w(ω) is the Fourier transform of the external acceleration w(t),

w(ω) =
∫ +∞

−∞
dte+iωt F(t)

m
. (2.29)

The Fourier transform of equation (2.25) yields the Green’s function

G0(ω) =
∫ +∞

−∞
eiωtG0(t) dt = 1

ω2 − E2
R + i� ω

. (2.30)

9
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This Green’s function has the retarded property having poles in the lower complex semi-plane
at ω = ±ωR − i

2�. As a function of time, it equals to

G0(t) = e− 1
2�t

ωR
sin(ωRt + π)θ (t), θ (t) =

{
0, t < 0
1, t � 0.

(2.31)

For � < 2 ER the particle oscillates in response to the external force while for � � 2ER the
oscillations become over-damped. Further, to be specific, we always assume that � < 2ER.

Note that the Green’s function G0(ω) satisfies the exact sum-rule∫ ∞

−∞
A2ω

dω

2π
= 1, A = −2 Im G0. (2.32)

This sum-rule is actually a general property of the retarded Green’s function for the stationary
system of relativistic bosons, see [49] and our further considerations in section 6.

The solution (2.26) of the homogeneous equation can be also represented through the
Green’s function convoluted with the source term w0(t) expressed through the δ-function and
its derivative

z0(t)= −
∫ t

0
dt ′G0(t − t ′)w0(t

′), w0(t)= a0ER sin(β −α0)δ(t − 0)− a0 cosα0δ
′(t − 0),

(2.33)

β = arctan

(
�

2ωR

)
. (2.34)

In the Fourier representation we have z0(ω) = −G0(ω)w0(ω), wherew0(ω) = a0(ER sin(β−
α0)+ iω cosα0).

Now we are at the position to include effects of anharmonicity, � 
= 0. In the leading
order with respect to a small parameter � the Fourier transform of the solution z(ω) of the
equation of motion acquires the form

z(ω,�) = −G0(ω) w̃(ω)+�G0(ω)

∫ +∞

−∞

dω′

2π

dω′′

2π
(2π) δ(ω − ω′ − ω′′)

× [G0(ω
′) w̃(ω′)][G0(ω

′′) w̃(ω′′)], (2.35)

where w̃(ω) = w0(ω) + w(ω). Equation (2.35) has a straightforward diagrammatic
interpretation

z(ω) =
iG0(ω)

iw(ω) +
iG0(ω) iG0(ω )

iG0(ω )

iw(ω )

iw(ω )

−iΛδω,ω +ω

, (2.36)

where the thin line stands for the free Green’s function iG0(ω), the cross depicts the source
i w̃(ω) and the dot represents the coupling constant −i�. The integration is to be performed
over the source frequencies with the δ-function responsible for the proper frequency addition.
The diagrammatic representation can, of course, be extended further to higher orders of �.
The full solution z(ω) is presented by the thick line with the cross

z(ω) = , (2.37)

where the thick line stands for the full Green’s function iG(ω) satisfying the Dyson equation
shown in figure 1.

Let us consider another aspect of the problem. For simplicity consider a linear oscillator
(� = 0). Assume that in vacuum oscillations are determined by the equation

z̈(t)+ E2
0 z(t) = 0. (2.38)

10
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= +

Figure 1. The Dyson equation for the full Green’s function of the anharmonic oscillator described
by the equation of motion (2.22).

The Fourier transform of the retarded Green’s function describing these oscillations is as
follows

G0
0(ω) = 1

ω2 − ω2
0 + i0ω

. (2.39)

Being placed in an absorbing medium the oscillator changes its frequency and acquires the
width, which can be absorbed in the quantity Re� = E2

R − E2
0 , Im� = −�ω, meaning a

retarded self-energy. Then we rewrite (2.30) as

G0(ω) = 1

ω2 − ω2
0 −� = 1(

G0
0

)−1 −�
(2.40)

and we arrive at equation

G0 = G0
0 + G0

0�G0, (2.41)

known in quantum field theory as the Dyson equation for the retarded Green’s function.

2.1.2. Anharmonic damped oscillator under the action of an external force: specific solutions.
Now we illustrate the above general formula with the help of examples. To be specific we
assume that the oscillator was at rest initially and we start with the case � = 0.

Example 1. Consider a response of the system to a sudden change of an external constant
force

F(t) ≡ F1(t) = F0θ (−t). (2.42)

The solution of equation (2.22) for � = 0 is

z(t) ≡ z1(t) = −
∫ +∞

−∞

dω

2π i
e−iωtG0(ω)

F0/m

ω + iε
= F0/m

ERωR
e− 1

2�t cos(ωRt − β)θ (t)

+ F0

mE2
R

θ (−t), (2.43)

where β is defined as in equation (2.34). The solution is purely causal, meaning that there
are no oscillations for t < 0 and that they start exactly at the moment when the force ceases.
This naturally follows from the retarded properties of the Green’s function (2.31), where the
θ -function cuts off any response for negative times. The latter occurs because both poles of
the Green’s function are located in the lower complex semi-plane and the parameter � is
positive corresponding to the dissipation of the energy in the system.

Solution (2.43) is characterized by three time-scales. Two time-scales, the period of
oscillations P = 2π

ωR
, cf. (2.5), and the time of the amplitude quenching, i.e. the decay time

t (cl)
dec = 2/�, cf. (2.27), appear already in the free solution (2.26). Another time-scale appears

as the phase time delay in the system response on a perturbation occurring at the time moment
t = 0 (cf. equation (2.14)),

δt (cl)
ph = β/ωR > 0. (2.44)

The solution (2.43) is depicted on the left panel of figure 2 for three values of �. Arrows
demonstrate that for � 
= 0 the response of the oscillator on the action of the external

11
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Figure 2. The response of the oscillator to the external force. Left panel—example 1: the external
force is given by (2.42). Solution (2.43) is shown for different values of�. Right panel—example 2:
the external force (2.45) is shown by the solid line. Dash-dotted lines depict solutions (2.47). Values
of � and Tf are shown in the legends.

perturbation is purely causal. The larger � is, the smaller is t (cl)
dec and the larger is δt (cl)

ph , i.e. the
larger is the time shift of the oscillations. For � → 2ER the oscillation period P → ∞ and the
phase shift δt (cl)

ph becomes infinite, but the ratio δt (cl)
ph /P remains finite, δt (cl)

ph /P = β/2π → 1/4.

Example 2. Interestingly, the same oscillating system being placed in another external field
can exhibit an apparently acausal reaction. To demonstrate this possibility consider the driving
force acting within a finite time interval [−Tf,+Tf] and having a well-defined peak occurring
at t = 0:

F(t) ≡ F2(t) = F0 cos2

(
πt

2Tf

)
θ (Tf − |t|). (2.45)

The oscillator response to this pulse-force is given by

z(t) ≡ z2(t) = −F0

m

∫ +∞

−∞

dω

2π
e−iωtG0(ω)

sin(ωTf)

ω + iε

π2/T 2
f

(ω + iε)2 − π2/T 2
f

. (2.46)

After some manipulations the solution acquires the form

z2(t) = F0

mE2
R

[ζ (t + Tf)θ (t + Tf)− ζ (t − Tf)θ (t − Tf)],

ζ (t) = 1

2

[
1− E2

R

r+r−
cos

(
π

Tf
t− β−+ β+

)
+ ER

ωR

(π2/T 2
f )

r+r−
e− 1

2�t cos(ωRt − β − β− − β+)
]
,

r± =
√
(ωR ± π/Tf)2 + 1

4
�2, β± = arctan

(
1

2
�/[ωR ± π/Tf]

)
, (2.47)

and the phase shift β here is given by equation (2.34). The first two terms in ζ (t) are operative
only for −Tf � t � Tf and cancel out exactly for t > Tf. If the interval of the action of the force
is very short, i.e. Tf ER � 1, then for t > Tf the oscillator moves after a single momentary
kick similarly to that in example 1, and up to the terms ∼ O(E2

R T 2
f /π

2) the solution (2.47)
yields z2(t) ≈ z1(t + Tf). In the opposite case, i.e. for Tf ER � 1 and t ∈ [−Tf,Tf], the
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solution z2(t) oscillates around the profile of the driving force (2.45) with a small amplitude
∼ (F0/mE2

R)O(π
2/E2

R)T
2

f ,(
m E2

R/F0
)
z2(t) = 1

F0
F2
(
t − �/E2

R

)+ π2

2 T 2
f E2

R

{(
1 − 1

2

�2

E2
R

)
cos

(
π

Tf

[
t − �

E2
R

])
+ e− 1

2�(t+Tf)
ER

ωR
cos(ωR (t + Tf)− 3β)

}
. (2.48)

In the given example besides P and t (cl)
dec the system is characterized by the initial pulse-time

tpulse = 2Tf (2.49)

and by two phase time-scales

δt (1)ph = Tf(β− − β+)/π and δt (2)ph = (β + β− + β+)/ωR. (2.50)

The solution (2.47) is shown in figure 2, right panel. As we see from the lower panel,
for some values of Tf and � the maximum of the oscillator response may occur before the
maximum of the driving force. Therefore, if for the identification of a signal we use a detector
with the threshold close to the pulse peak, such a detector would register a peak of the
response of the system before the input’s peak. In [16] a similar mathematical model was used
to simulate and analyze ‘a causal loop paradox’, when a signal from the ‘future’ switches off
the input signal. A system with such a bizarre property has been realized experimentally [50].

Example 3. The temporal response of the system depends on characteristic frequencies of the
driving force variation. For a monochromatic driving force

F(t) ≡ F3(t) = F0 cos(Ept) (2.51)

the solution of the equation of motion for t > 0 is

z(t) = z3(t) = F0

m
|G0(Ep)| cos(Ept − δ(Ep)) = (F0/m) cos(Ept − δ(Ep))√

(E2
R − E2

p)
2 + �2E2

p

, (2.52)

where the phase shift of the oscillations compared to the oscillations of the driving force,
δ(Ep), is determined by the argument of the Green’s function

δ(Ep) = π + arg G0(Ep) = i

2

(
log
[(

E2
R − E2

p

)
/(Ep�)− i

]− log
[(

E2
R − E2

p

)
/(Ep�)+ i

])
.

(2.53)

The phase shift δ is determined such that δ(Ep = 0) = 0. In equation (2.53) the logarithm is
continued to the complex plane as log(±i) = ±π so that the function δ(Ep) is continuous at
Ep = ER, see figure 3(a), and at other points

tan δ(Ep) = −Ep�
/(

E2
p − E2

R

)
. (2.54)

The amplitude of the solution (2.52) has a resonance shape peaking at Ep = ER with a width
determined by the parameter �. In contrast to examples 1 and 2, solution (2.52) does not
contain the time-scale t (cl)

dec , since the external force does not cease with time and continuously
pumps-in the energy to the system. So, two time-scales, the period P = 2π/Ep and the phase
time

δt (1)ph = δ(Ep)/Ep (2.55)

fully control the dynamics. Note that in contrast to (2.14), here Ep is the frequency rather than
the particle energy.

13
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(a) (b)

Figure 3. (a) The phase shift δ(Ep) given by equation (2.53). (b) The response of the damped
anharmonic oscillator to a harmonic external force (2.51) for different values of the force frequency
Ep shown by line labels in units of ER for� = 0.2 ER and� = 0.3 E4

Rm/F0. Arrows show response
maxima. The vertical dotted line shows the maximum of the driving force.

We have seen in example 2 that for some choices of the external force restricted in time
the oscillating system can provide an apparently advanced response. The anharmonicity can
produce a similar effect. For the case of small anharmonicity, � 
= 0, the solution (2.52)
acquires a new term (an overtone)

z3�(t) = z3(t)−
(F0/m)2�

/(
2E2

R

)[(
E2

R − E2
p

)2 + �2E2
p

]
⎡⎣1 + E2

R
cos(2[Ept − δ(Ep)] − δ(2Ep))√(

E2
R − 4E2

p

)2 + 4�2E2
p

⎤⎦ , (2.56)

which oscillates on the double frequency 2Ep and the phase is shifted with respect to the
solution (2.52) by δ(2Ep). The Fourier transform of this solution is given by equation (2.35)
provided w0 is put to zero. Respectively, there appears an additional phase time-scale

δt (2)ph = (δ(Ep)+ 1
2δ(2Ep)

)/
Ep, (2.57)

characterizing the dynamics of the overtone.
In figure 3(b) we show the solution (2.56) for several frequencies, Ep. If we watch for

maxima in the system response z(t) (shown by arrows) and compare how their occurrence is
shifted in time with respect to the maxima of the driving force, we observe that for most values
of Ep the overtone in (2.56) induces a small variation of the phase shift with time. However
for Ep ∼ 1

2 ER the overtone can produce an additional maximum in z(t), which would appear
to occur before the actual action of the force. The system would seem to ‘react’ in advance.

Example 4. In realistic cases the driving force can rarely be purely monochromatic, but is
usually a superposition of modes grouped around a frequency Ep:

F(t) ≡ F4(t) = F0

∫ +∞

−∞
dEg(E − Ep; γ ) cos(Et), (2.58)

where an envelope function g(ε; γ ), ε = E − Ep, is a symmetrical function of frequency
deviation picked around ε = 0 with a width γ and normalized as

∫ +∞
−∞ dε g(ε; γ ) = 1. The

integral (2.58) can be rewritten as

F4(t) = F0 cos(Ept)
∫ +∞

−∞
dεg(ε; γ ) cos(εt) = AF (γ t) cos(Ept), (2.59)
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that allows us to identify Ep as the carrier frequency and AF (γ t), as the amplitude modulation
depending on the dimensionless variable γ t.

For � = 0, the particle motion is described by the function

z4(t) = −
∫ +∞

−∞

dω

2π
e−iωtG0(ω)

1

m
F(ω)

= − F0

m

∫ +∞

−∞

dω

2π
e−iωtG0(ω)π [g(ω + Ep; γ )+ g(ω − Ep; γ )]

= − F0

m
Re
∫ +∞

−∞
dε e−i(Ep+ε)tG0(Ep + ε)g(ε; γ ). (2.60)

The last integral can be formally written as

mz4(t) = |G0(Ep)|Re e−i(Ept−δ(Ep)) e− 1
2 ∂

2
E log G0(Ep)∂

2
t +O(∂3

t )AF (γ (t + i∂E log G0(Ep))). (2.61)

Here O(∂3
t ) represents time derivatives of the third order and higher. We used the relation

log G0(E ) = log |G0(E )| + i δ(E )− iπ , where δ(E ) is defined as in equation (2.53), but now
as a function of E rather than Ep. The first-order derivatives generate the shift of the argument
of the amplitude modulation via the relation exp(a ∂t )AF (t) = AF (t + a). Note that the time
shift of AF (t) involves formally the ‘imaginary time’. As we will see later in section 3, the
same concept appears also in quantum mechanics.

To proceed further with equation (2.61) one may assume that the function AF (t) varies
weakly with time so that the second and higher time derivatives can be neglected. In terms of
the envelop function, this means that g(ε) is a very sharp function falling rapidly off for ε � γ
while γ � �. A typical time, on which the function AF (t) fades away, can be estimated as

tγ ,(cl)
dec = 1/γ . (2.62)

If, additionally, the oscillator system has a high quality factor, i.e., � � ER and
|∂E log |G0(Ep)|| � δ′(Ep), that is correct for Ep very near ER, we arrive at the expression

mz4(t) = AF (t − δ′(Ep)))|G0(Ep)| cos(Ept − δ(Ep)). (2.63)

We see that in this approximation there are five time-scales determining the response of the
system. The oscillations are characterized by the period P = 2π/Ep and the damping time
t (cl)
dec = 2/�. Moreover, the envelope function is damping on the time-scale tγ ,(cl)

dec . Additionally,
there are two delay time-scales: oscillations of the carrier wave are delayed by the phase time
δt (cl)

ph (Ep) = δ(Ep)/Ep, see (2.55), whereas the amplitude modulation AF is delayed by the
group time

t (cl)
gr (Ep) = ∂δ(Ep)

∂Ep
= −E2

R + E2
p

Ep
Im G0(Ep). (2.64)

This time shift appears because the system responds slightly differently to various frequency
modes contributing to the force envelop (2.58).

The group and phase times are shown in figure 4. The group time is a much more rapidly
varying function of the external frequency Ep and is strongly peaked at Ep ∼ ER. Close to the
resonance the group time can be written as

t (1)gr (Ep) ≈ �/2

(Ep − ER)2 + 1
4�

2
= 1

2
A1(Ep) > 0. (2.65)

For � 
= 0 there also appear other resonances in the system response, see equation (2.56). In
the linear in� approximation the resonance with Ep � 1

2 ER is excited. Close to this resonance
the group time is

t (2)gr (Ep) ≈ �/4

(Ep − ER/2)2 + 1
4 (�/2)

4
= 1

2
A2(Ep) > 0 (2.66)
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δ

δ

Figure 4. The phase and group time delays given by equations (2.55) and (2.64), respectively,
calculated for � = 0.2ER. The maximum of the group time coincides with t (cl)

dec .

with a maximum at Ep = ER/2. The width of the peak is �/4. Note that for both modes the
functions A1,2(Ep) satisfy the sum-rule∫ ∞

−∞
A1,2(E ) dE/(2π) = 1, or

∫ ∞

−∞
t (1,2)gr (E ) dE/π = 1. (2.67)

The energy–time sum-rules demonstrate the relation of the group times to the density of states,
i.e. the re-grouping of the number of degrees of freedom.

The time-difference

δtγf = t (i)gr − tγ ,(cl)
dec , (2.68)

(we call it forward time delay/advance) demonstrates to what extent the groups of waves are
delayed on the scale of degradation of the envelop function. As is seen from figure 4 in the
near-resonance region δtγf > 0, whereas in the off-resonance region δtγf < 0. As we shall see
in section 3, an important case is when γ ∼ �.

To study corrections to equation (2.63) due to the second-order derivatives in
equation (2.61) we turn back to the case � = 0 and take the Gaussian envelope function
gGauss(ε) and the corresponding amplitude modulation AF,Gauss(γ t), such that

gGauss(ε; γ ) = exp(−ε2/2γ 2)√
2πγ 2

, AF,Gauss(t; γ ) = F0 exp(−γ 2t2/2). (2.69)

Then, using the identity

ea∂2
t e−γ 2t2/2 ≡

∞∑
n=0

an

n!
∂2n

t e−γ 2t2/2 = e−γ 2t2/2(1+2aγ 2 )√
1 + 2aγ 2

, (2.70)

we obtain the response of the system to the Gaussian force in the form

z4Gauss(t) = F0

m
|G0(Ep)|Re

e−i(Ept−δ(Ep))√
1 − γ 2∂2

E log G0(Ep)

exp

[
−γ 2 (t + i∂E log G0(Ep))

2

2
(
1 − γ 2∂2

E log G0(Ep)
)] .

(2.71)
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The derivatives of the Green’s function can be conveniently expressed through the Green’s
function as

∂E log G0(E ) = i δ′(E )+ ∂E log |G0(E )| = −(2 E + i�)G0(E ),

∂2
E log G0(E ) = i δ′′(E )+ ∂2

E log |G0(E )| = 2 G0(E )+
(
4 E2

R − �2)G2
0(E ). (2.72)

After some algebra we can cast this expression in the form similar to equation (2.63) with the
amplitude modulation (2.69):

m z4Gauss(t) = AF,Gauss
(
t − t̃ (cl)

gr ; γ̃ )Cγ |G0(Ep)| cos(Ẽp(t) t − δ̃(Ep)), (2.73)

where, however, we have to redefine the parameters of both the carrier wave and the amplitude
modulation function. The width of the Gaussian packet is determined from expression

γ̃ 2 = γ 2 1 − γ 2 ∂2
E log |G0(Ep)|

|1 − γ 2∂2
E log G0(Ep)|2

, (2.74)

and the amplitude modulation is delayed by the group time

t̃ (cl)
gr = δ′(Ep)+ ∂E log |G0(Ep)| γ 2δ′′(Ep)

1 − γ 2∂2
E log |G0(Ep)|

. (2.75)

An interesting effect is that the frequency of the carrier wave is changed and even becomes
time dependent,

Ẽp(t) = Ep + γ̃ 2

[
∂E log |G0(Ep)| +

(
1

2
t − δ′(Ep)

)
γ 2δ′′(Ep)

1 − γ 2∂2
E log |G0(Ep)|

]
, (2.76)

and the phase shift is given by

δ̃ = δ(Ep)+ 1

2
arctan

(
γ 2 δ′′(Ep)

1 − γ 2∂2
E log |G0(Ep)|

)
+ γ̃ 2

[
δ′(Ep) ∂E log |G0(Ep)|

+ 1

2
([∂E log |G0(Ep)]

2 − [δ′(Ep)]
2)

γ 2δ′′(Ep)

1 − γ 2∂2
E log |G0(Ep)|

]
. (2.77)

The amplitude of the system response is modulated by the factor

Cγ = exp

[
1

2
γ 2 [∂E log |G0(Ep)|]2(

1 − γ 2∂2
E log |G0(Ep)|

)2
]/∣∣1 − γ 2∂2

E log G0(Ep)
∣∣. (2.78)

Keeping terms quadratic in γ we find the corrected group and phase times

t̃ (cl)
gr � δ′(Ep)+ γ 2∂E log |G0(Ep)|δ′′(Ep)+ O(γ 4), (2.79)

Epδt̃
(cl)
ph � δ(Ep)+ γ 2

(
1
2δ

′′(Ep)+ ∂E log |G0(Ep)|(δ′(Ep)− δ(Ep)/Ep)
)+ O(γ 4). (2.80)

The importance of various correction terms depends on how close the carrier frequency Ep

is to the resonance frequency ER. Assuming that the oscillator has a high quality factor� � ER,
we can distinguish three different regimes: (i) very near to the resonance, |Ep −ER| � �2/ER,
(ii) an intermediate regime, �2/ER � |Ep − ER| � � and (iii) far from the resonance
� � |Ep − ER|. In the regime (i) corrections in (2.79), (2.80) are respectively of the order of
O(γ 2/E2

R) and O(γ 2/ER�). In the regime (ii) correction terms are of the order of O(γ 2/�2).
In the regime (iii) corrections are respectively of the order of O(γ 2/E2

R) and O(γ 2�/E3
R) at

most.
To illustrate the applicability range of the leading-order expression (2.63) and the size

of the corrections in equation (2.73) we plot in figure 5 the quantities (2.74), (2.75), (2.76),
(2.78) versus the force oscillation frequency Ep for various values of the envelop width γ
and � = 0.3 ER. We see that, as argued before, the corrections are small for Ep far from
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Γ
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γ

γ

(a) (b) (c)

Figure 5. Parameters of the system response (2.71) to the modulated periodic external force (2.59)
with the Gaussian envelop (2.69) calculated including the second-order derivatives for several
values of the envelop width γ as functions of the force oscillation frequency Ep. The damping
parameter of the system is � = 0.3 ER. (a) The time shift of the amplitude modulation (2.75)
for various values of γ . The dotted line shows the time shift (2.64) entering in the leading-
order expression (2.63) involving the first-order derivatives only. (b) The relative deviation of the
oscillation quasi-period P̃(t) = 2π/Ẽp(t), see equation (2.76), from the force oscillation period
P = 2π/Ep for two moments of time t = 0 and t = 3/ER. (c) The modification of the packet width
(γ̃ /γ )2 given by equation (2.74) and the amplitude scaling factor Cγ given by equation (2.78).

Figure 6. Solid lines: the response (2.60) of the oscillatory system to the modulated periodic
external force (2.59) with the Gaussian envelop (2.69) calculated for γ = � = 0.3ER and various
values of the force frequency Ep. Dashed lines show the external force (2.59) and dotted lines
depict the envelop function (2.69).

the resonance frequency ER and right at the resonance. The corrections are maximal for
Ep ∼ ER±�. Remarkably, at these frequencies the system response could become significantly
broader (i.e. it lingers longer in time) than the driving force, γ̃ < γ . Figure 5 shows also that
equation (2.63) can be used only for γ /� � 0.3. The expression (2.73) is applicable for
γ /� � 0.5 and �/ER � 0.3 at the 30% accuracy level. For higher values of γ the corrections
become too large and further terms in expansion (2.61) have to be taken into account.

In figure 6 we depict the response of the system to the force (2.59) with the ‘broad’
Gaussian envelop (2.69), γ = �, as it follows from numerical evaluation of the integral
(2.60). We clearly see that when Ep approaches the interval ER ± � not only the amplitude
of the system response grows, but also the response lasts much longer than the force acts.
Thus we demonstrated peculiarities of the effect of a smearing of the wave packet in classical
mechanics.

2.1.3. A simple 3D-example: the scattering of particles on hard spheres. Consider a simplest
case when a beam of (point-like) particles falls onto a hard sphere of a radius R, cf. [4].
The particles scatter at different angles θ , sin(θ/2) =

√
1 − b2/R2 depending on the impact
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R
b

l

l

Figure 7. Particle scattering at angle θ off the hard sphere of radius R.

parameter b. The arrival time of the scattered particle to the detector decreases with an increase
of the size of the sphere. The time advance for the particle scattered on the sphere’s surface
compared to that should it scatter on the center in the same θ direction is

δt (cl)
W = −2

�l

v
= −2 R

v
sin
θ

2
� −2 R

v
; (2.81)

see figure 7. In the given example δt (cl)
soj = δt (cl)

W , as they were introduced above, see
equations (2.15), (2.17). As is seen from (2.17), for the repulsive potential V = a/(r − b)α ,
r > r0 = r(vr = 0), a > 0, α > 0, as in the case of the scattering on the hard sphere, there
appears a time advancement, provided r0 is very close to b. However the value of the Wigner
time advancement is limited.

As we shall see below, the relevant quantity related to the advance/delay of the scattered
wave, the scattering advance/delay time, is half of the Wigner advance/delay time. In the given
hard sphere example thus is introduced

δt (cl)
s = 1

2δt
(cl)
W , (2.82)

the difference between the time when the particle touches the sphere surface and the time
when the particle freely reaches the center of the sphere. The advance δt (cl)

s is limited by the
value −R/v.

Note that the averaged advance time for all scattered particles incident on the sphere at
various impact parameters 0 � b � R is〈

δt (cl)
W

〉 = ∫ R

0
δt (cl)

W

2π b db

πR2
= − 4

v R2

∫ R

0

√
R2 − b2 b db = −4

3

R

v
. (2.83)

From the above analysis we are able also to conclude that the collision term in the kinetic
equation describing the behavior of a non-equilibrium gas of hard spheres should incorporate
the mentioned non-local time advancement effects.

2.2. Time shifts in classical electrodynamics

2.2.1. Dipole radiation of a charged oscillator. Let us consider the same damped oscillatory
system as in the previous subsections, assuming now that the particle is charged and oscillates
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in the z direction near the point z = 0 under the action of an incident electromagnetic wave
propagating in the x direction with the electric field polarized along the z-axis:

�Ein(t,�r ) = E0 �ez cos(�p�r − Ep t), �Hin(t,�r ) = [�ex × �Ein], �p = p�ex. (2.84)

Here �ex(yz) denotes the unit vector along the x(yz) direction, Ep = c p and c is the speed of
light. We assume that the field weakly changes over the range of particle oscillations. Then
the force acting on the charge is �F(t) ≈ E0 �ez cos(Ep t) and the oscillations are described by
equation (2.52) of the previous section. The electric dipole moment induced in the system by
the incident wave is given by

�d(t) = ez(t) = e2E0

m

cos(Ept − δ(Ep))√(
E2

R − E2
p

)2 + �2
totE2

p

�ez, �tot = �+ �rad, (2.85)

�tot is the total width of the oscillator. The oscillating dipole emits electromagnetic
waves. Therefore, there is a dissipative process due to the radiation friction force, �rad =
2e2 E2

p/(3 m c3) for Ep � ER, which we consider. The additional damping effects included in
� are, e.g., due to atomic collisions, provided the charged particle oscillates in a medium. The
formulated model is the well-known Lorentz model for vibrations of an electron in an atom.
An ensemble of such oscillators resembles a dispersive medium.

Far from the dipole in the so-called wave zone |dmax/e| � λ� r, where λ = 2π/p is the
radiation wavelength and |dmax/e| is the amplitude of the oscillations, the out-going waves of
electric and magnetic fields are given by [51]

�Eout(t,�r) = 1

rc2
[�nr × [�nr × �̈d(t − r/c)]],

�Hout(t,�r) = [�nr × �Eout(t,�r)] = 1

rc2
[ �̈d(t − r/c)× �nr] (2.86)

with �nr = �r/|�r |. The time shift t − r/c arises due to the finiteness of the speed of light. The
scattered electric field is polarized along a meridian, �Eout ‖ �eθ .

The differential cross-section for the scattering process can be defined as the ratio of the
time-averaged intensity of the induced radiation dĪ, passing through a sufficiently large sphere
of radius R0, to the time-averaged energy flux of the incident wave falling on the oscillator;
see section 78 in [51],

dσ = 1

�Sin

dĪ, dI = �Sout d�sr. �Sin(out) = c

4π
[�Ein(out) × �Hin(out)].

Here the line over a symbol means a time average over the oscillation period and d�sr is the
element of the surface oriented in the direction �nr. With the help of equations (2.84) and (2.86)
we find

�Sin = c

4π
E2

0 cos2(Ept)�ex, dI = (�Sout�nr)R
2
0 d	 = 1

4πc3
[ �̈d(t − R0/c)× �nr]

2 d	. (2.87)

Using equation (2.85) and performing the averaging over time we obtain [51]

dσ

d	
=
(

e2

mc2

)2 E4
p(

E2
R − E2

p

)2 + �2
totE2

p

[�ez × �nr]
2. (2.88)

We chose the spherical coordinate system so that the polar angle corresponds to the
scattering angle θ—the angle between the propagation directions of in-coming and out-
going waves, cos θ = (�nr �p)/p. Then the vector product in (2.88) can be written as
[�ez × �nr]2 = cos2 θ + sin2 θ sin2 φ. Thus the cross-section depends on the azimuthal angle
that corresponds to a scattering of photons with different magnetic quantum numbers:
[�ez × �nr]2 = 4π

3 |Y1,0(θ, φ) + (Y1,+1(θ, φ) + Y1,−1(θ, φ))/
√

2|2, where Yl,m(θ, φ) are the
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spherical functions. The magnetic quantum number dependence appears because we have
confined the oscillator motion to one dimension. For a spherically symmetric scattering this
dependence would be averaged out.

The differential cross-section can now be written as

dσ

d	
= π

p2

3�2
totE

2
p(

E2
R − E2

p

)2 + �2
totE2

p

B2
rad

∣∣∣∣Y10(θ, φ)+ 1√
2
(Y1−1(θ, φ)+ Y1−1(θ, φ))

∣∣∣∣2, (2.89)

where we introduced the branching ratio Brad = �rad/�tot. One can introduce the scattering
amplitude as

dσ

d	
= | f (θ, φ)|2, f (θ, φ) =

∞∑
l=0

√
2l + 1

√
4π

l∑
m=−l

fl,mYl,m(θ, φ). (2.90)

For the spherically symmetrical scattering the amplitude would be

f (θ ) =
∞∑

l=0

(2l + 1) flPl(cos θ ). (2.91)

Here Pl(cos θ ) are Legendre polynomials normalized as [52]:
∫ 1
−1 P2

l (x) dx = 2/(2l + 1).
In our case the scattering amplitude has only terms with l = 1 and

√
2 f1,±1 = f1,0 ≡ f1

with

2p f1 = Brad�totEp

E2
R − E2

p − i�totEp
= Brad

cot δ(Ep)− i
= Brad sin δ(E ) eiδ(Ep). (2.92)

The phase of the scattered waves δ(Ep) is defined as in equations (2.53) and (2.54) but now
with �tot instead of �, i.e. tan δ(Ep) = −�totEp

/(
E2

p − E2
R

)
.

After integration over the scattering angle the total cross-section can be cast in the standard
spin-averaged Breit–Wigner resonance form (see page 374 in [53])

σ = 2(2l + 1)4π | fl|2 = 3

2

4π

p2

�2
totE

2
p(

E2
R − E2

p

)2 + �2
totE2

p

B2
rad. (2.93)

Here the statistical factors correspond to the angular momentum, l = 1 in our case.
From the structure of equation (2.85) we see that the concepts of the phase and group

time delays (2.55) and (2.64) are also applicable to electromagnetic waves, if we deal with
not a monochromatic wave but a wave packet instead. If the in-coming waves were like
|�Ein| = E0 fE (�p�r − Ep t) cos(�p�r − Ep t) with some function fE (x) integrable in the interval
(−∞,+∞), then the out-going wave would be |�Eout| ∝ E0 fE

(
t − δt (cl)

s − r/c
)

cos(p r −
Ep [t − δ(Ep)]). The propagation of the scattered wave packet is delayed by the group time
(2.64), see also (2.65), (2.66),

t (cl)
s = ∂δ

∂Ep
≈ A

2
= �tot/2

(Ep − ER)2 + �2
tot/4

> 0, (2.94)

which here in the 3D case has the meaning of the scattering delay time, being twice as small
compared to the Wigner delay time introduced above, see equation (2.21). Here we performed
expansion in frequencies close to the resonance Ep ∼ ER. With t (cl)

s from equation (2.94), the
scattered wave appears with a delay compared to the condition t − r/c � 0. Thus causality
requires that the scattered wave arises for t − t (cl)

s − r/c � 0.
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2.2.2. Scattering of light on hard spheres. For the scattering of light on a hard sphere of
radius R, the causality condition can be formulated as [2, 4]: if the incident wave propagating
along the z direction vanishes for t < z/c, the scattered wave in the direction θ must vanish
for t < (r − 2 R sin(θ/2))/c. The quantity 2R sin(θ/2) is the difference in the paths of the
light scattered at angle θ on the sphere surface and on the sphere center (2.81).

The scattering process (when the beam just touches the sphere) proceeds with half the
advance time compared to R/c with which the light would pass to the center of the sphere, cf.
(2.81). Correspondingly, the advancement in the scattering time, δt (cl)

s , proves to be half that
of the advancement in the Wigner time, δt (cl)

W .

3. Time shifts in non-relativistic quantum mechanics: 1D-scattering

The problem of how to quantify a duration of quantum mechanical processes has a long and
vivid history. It started with a statement of Pauli [54] that in the framework of traditional non-
relativistic quantum mechanics it is impossible to introduce a Hermitian (self-adjoint) linear
operator of time, which is canonically conjugate to the Hamiltonian. The reason for this is that
for most of the systems of physical interest the Hamiltonian is bounded from below4. Later on
a variety of ‘time-like’ observables were introduced tailored for each particular system. For a
comprehensive review of the history of this question we address the reader to the introduction
of [10]. Various inter-related definitions of time appeared, for instance, in consideration of the
following questions: How long does the quantum transition (the quantum jump duration) last
[56, 57]? What are interpretations of time–energy uncertainty relations [58]? How can one
quantify the time-of-flight or the time of arrival of a particle to a given point [59, 60]? How
long does it take for a particle to tunnel through a barrier [8, 13, 61–64]? What is the life-time
of a resonance [3, 5, 20, 65, 66]? What is the duration of particle collision [1–3, 67]?

Without any pretense to address all these issues, in this section we would like to introduce
the basic concepts related to the temporal characteristics of typical quantum mechanical
processes, such as tunneling, scattering and decay.

3.1. The stationary problem

We begin with a 1D quantum–mechanical system, described by the Hamiltonian Ĥ = Ĥ0 + Û
consisting of the free motion Hamiltonian Ĥ0 = − �

2

2 m
∂2

∂z2 for a particle with mass m and of
an arbitrary potential Û = U (z) � 0, which is assumed to be localized within the interval
−L/2 < z < L/2 and vanishing elsewhere outside. This Hamiltonian has a continuous
spectrum 0 < E < +∞ and the complete set of eigenfunctions ψ(z; E ) obeying the equation
Ĥψ(z; E ) = E ψ(z; E ). We will consider the wave functions satisfying the asymptotic
conditions for the standard scattering problem5

ψ1(z; E ) =

⎧⎪⎨⎪⎩
ei k z/� + R1(E ) e−i k z/�, z < − 1

2 L,

ψU,1(z; E ), − 1
2 L � z � 1

2 L,

T1(E ) e+i k z/�, 1
2 L < z,

(3.1)

ψ2(z; E ) =

⎧⎪⎨⎪⎩
T2(E ) e−i k z/�, z < − 1

2 L,

ψU,2(z; E ), − 1
2 L � z � 1

2 L,

R2(E ) e+i k z/� + e−i k z/�, 1
2 L < z,

(3.2)

4 Nowadays there continue attempts to introduce a formal quantum observable for time; see e.g. [55].
5 Instead of the basis wave functions for unilateral incidence one could use the symmetrical and anti-symmetrical
wave functions ψs = ψ1 + ψ2 and ψa = ψ1 − ψ2 corresponding to bilateral incidence [68].
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with k = √
2 m E > 0. The wave functions ψ1 and ψ2 describe the physical situation

when a particle beam from the left or from the right, respectively, incident on the potential,
becomes split into a reflected part with the amplitude R1,2 and a transmitted part with the
amplitude T1,2. The wave functions are normalized to the unit incident amplitude. Then the
quantities |R1,2|2 and |T1,2|2 mean the reflection and transmission probabilities, respectively,
and |R1,2|2 + |T1,2|2 = 1. For any given wave function � the current is calculated standardly,

J [�] = i�

2m
(�∇z�

∗ −�∗∇z�). (3.3)

Thus, for the wave function ψ1 we can define three currents: the incident current jI =
J [exp(i k z/�)] = k

m , the transmitted current jT = J [ψ1(z >
1
2 L)] = |T1(E )|2 jI and the

reflected current jR = J [ψ1(z < − 1
2 L)] − jI = −|R1(E )|2 jI. The current conservation is

fulfilled and jI = jT − jR. Here, it is important to notice that in the region of the potential there
exists an ‘internal’ current jint = J [ψU,1(z)]. In the case of the classically allowed motion
above the barrier, jint = jT is determined by the sum of the currents of the forward-going wave
and of the backward-going wave, whereas in the region under the barrier jint is determined by
the contribution of the interference of waves, since the coordinate dependence of the stationary
wave function is given then by real functions. Namely the latter circumstance is the reason for
the so-called Hartmann paradox of apparent superluminality of the under-the-barrier motion
surviving in the case of wave packets infinitely narrow in energy space (the stationary state
limit), which we will consider below.

The time-reversal invariance of the Schrödinger equation implies that T1(E ) = T2(E ).
In the general case of asymmetric potential R1 
= R2. The functions R1(E ), R2(E ) and
T (E ) = T1(E ) = T2(E ) form the S-matrix of the 1D-scattering problem [69]. The unitarity
of the S-matrix implies the relation T ∗(E )R2(E ) = −R∗

1(E )T (E ).
To simplify, in further consideration we will assume that the potential U is symmetric,

U (−z) = U (z). Then there is a symmetry between the reflected amplitudes R1(E ) = R2(E ) =
R(E ), and the ‘internal’ parts of the wave functions ψU,1(z; E ) = ψU,2(z; E ) = ψU (z; E ) in
equations (3.1), (3.2) can be written as superpositions of symmetric and anti-symmetric wave
functions χ+(z; E ) and χ−(z; E ), respectively,

ψU (z; E ) = C+ χ+(z; E )+ C− χ−(z; E ). (3.4)

The functions are chosen such that χ±(0; E ) = Lχ ′
∓(0; E )/2 = (1 ± 1)/2, where the prime

means the coordinate derivative. The coefficientsC± in equation (3.4) can be expressed through
the scattering amplitudes as follows

C± = (T ± R) ei k L/2� ± e−i k L/2�

2χ±(L/2; E )
. (3.5)

The transmitted and reflected amplitudes are then expressed through the logarithmic derivatives
of these functions

d±(E ) = L

2

∂

∂z
lnχ±(z; E )

∣∣∣
z=L/2

, (3.6)

which can be chosen as real. The amplitudes

R(E ) = − 1
2 e−i k L/�[D+(E )+ D−(E )], T (E ) = − 1

2 e−i k L/�[D+(E )− D−(E )] (3.7)

are expressed through the functions

D±(E ) = d±(E )+ i k L/2�

d±(E )− i k L/2�
= ei 2δ±(E ), δ±(E ) = arctan

(
k L

2 � d±(E )

)
, (3.8)
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which have simple poles. The reflected and transmitted amplitudes can be now written as

R(E ) = eiφR cos
(
δ+(E )− δ−(E )

)
, φR(E ) = π − k L

�
+ δs(E ),

T (E ) = eiφT sin
(
δ+(E )− δ−(E )

)
, φT(E ) = 3

2
π − k L

�
+ δs(E ), (3.9)

where we introduced an ordinary 1D-scattering phase shift [69]

δs(E ) = δ+(E )+ δ−(E ). (3.10)

For sum and differences of the phases δ+ and δ− one can use the following relation

tan(δ+(E )± δ−(E )) = k L

2 �

d− ± d+
d− d+ ∓ k2 L2

4 �2

. (3.11)

The coefficients of the internal wave function (3.4) can be expressed with the help of
equations (3.7) and (3.8) through the logarithmic derivatives as follows

2χ±(L/2; E )C± = ∓ ik L

�

e−ik L/2�

d± − ik L/2�
. (3.12)

Substituting a scattering wave function ψ1 or ψ2 in equation (B.4) of appendix B we
find the relation between the integral of the internal part of the wave function, ψU , and the
scattering amplitudes and phase derivatives∫ +L/2

−L/2
dz|ψU (z; E )|2 = L + �

k

m
|T (E )|2φ′

T(E )+ �
k

m
|R(E )|2φ′

R(E )+
�

k
Im(R(E ) e+ikL/�),

(3.13)

here the prime stands for the derivative with respect to the energy. The last term appears due
to interference of the reflected and incident waves.

Note that all derived expressions are valid for the description of the scattering on an
arbitrary (symmetric) finite-range potential. Thus we are able to consider on equal footing the
particle tunneling, scattering above the barrier, as well as the scattering on quasi-stationary
levels, provided in the latter case the potential has a hole Umin < U < Umax in some interval
−L/2 < −a < z < a < L/2 and Umin < E < Umax.

The above expressions can be also applied for the situation where only a half of the
coordinate space is available for the particle motion. Such a situation is discussed in section 3.9,
where we describe the decay of quasi-stationary states. Then we can use the wave function
ψ1 (see equation (3.1)), with the condition ψ1(0) = 0, if the particle motion is allowed in the
left half-space (z < 0), or we can use the wave function ψ2 (equation (3.1)) with the condition
ψ2(0) = 0, if particles move in the right half-space (z > 0). The presence of the wall at z = 0
requires that only the anti-symmetric wave function survives in (3.4) and the internal wave
function becomes equal to

ψU (z; E ) = C̃− χ−(z; E ), C̃− = 2C−. (3.14)

This is easily taken into account in the above general expressions by the replacement
d+ → d−. After this, the transmitted wave disappears, T = 0, and the reflected wave amplitude
reduces to a pure phase multiplier, R = eiφs(E ), with

φs(E ) = π − k L

�
+ 2 δ−(E ). (3.15)

Note that the wave function of the radial motion in a 3D scattering problem is similarly
described, where δ− (δ− = δ+ for symmetric potential) plays the role of the scattering phase;
see section 4 below.
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δ
π

Figure 8. The amplitude and phase of the transmission wave for the rectangular barrier of height
U and length L calculated according to equations (3.18) and (3.19). Various curves correspond to
barriers of different lengths L, shown by labels in units of l0 = �/

√
2 mU .

Example: scattering on a rectangular barrier

Consider a rectangular potential barrier of length L: U (z) = U = const > 0 for
−L/2 < z < L/2. We assume first that E < U . Then we deal with a tunneling problem.
The wave function ψU in the internal region (see equation (3.4)), is decomposed into the
following even and odd functions:

χ+(z; E ) = cosh(� z/�), χ−(z; E ) = sinh(� z/�), � =
√

2 m (U − E ) > 0. (3.16)

The logarithmic derivatives follow then as

d+ = �2 L2

4�2 d−
= � L

2�
tanh(� L/2�). (3.17)

The phases of transmitted and reflected amplitudes in (3.9) can now be written through the
scattering phase:

δs(E ) = − arctan

(
�2 − k2

2 k �
tanh(� L/�)

)
. (3.18)

We used here the relation tan
(
π/2 + arctan(1/x)

) = −x. The squared amplitudes are given
by

|R|2 = (�2 + k2)2

(�2 − k2)2
sin2 δs = (�2 + k2)2 sinh2(� L/�)

(�2 + k2)2 sinh2(� L/�)+ 4 k2 �2
,

|T |2 = 1 − |R|2 = cos2 δs

cosh2(� L/�)
= 4 k2 �2

(�2 + k2)2 sinh2(� L/�)+ 4 k2 �2
. (3.19)

The coefficients C± in (3.5) can be expressed now as follows

C+ = −i e−ik L/2�

�
k sinh

(
�L
2 �

)− i cosh
(
�L
2 �

) , C− = i e−ik L/2�

�
k cosh

(
�L
2 �

)− i sinh
(
�L
2 �

) . (3.20)

The amplitudes R and T can be written as functions of two dimensionless variables
characterizing the energy of the incident particle, E/U , and the width of the potential, L/l0,
where l0 = �/

√
2 mU . These functions are illustrated in figure 8. For a thin barrier, L � l0,

the transmission probability is close to unity and the scattering phase is small except for very
small energies. For E < U the transmission probability decreases gradually with an increase
of L until L � 2l0 and than falls off exponentially for larger L. The scattering phase is a
monotonously growing function of the energy.
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If we replace � → i|�|, equations (3.18) and (3.19) also can be used for E > U (scattering
above the barrier). For E > U , the transmission probability is finite approaching unity for
E � U unsteadily exhibiting peaks at E/U = 1 − π2 n2 l2

0/4 L2 with integer n. For the peaks
|T | = 1, see figure 8.

3.2. Characteristics of time in the stationary scattering problem

Within the stationary scattering problem formulated above there is no notion of time per
se, since the only t-dependent overall factor e−i E t/� does not enter physical quantities.
However, we have at our disposal quantities, which can be used to construct a measure
with the dimensionality of time. Such a quantity describing the transmitted waves (at z > L/2)
arises, for example, if we divide the integral of the squared wave function

∫ b
a |ψ(z; E )|2 dz by

a current. The flux density outside the barrier does not depend on the coordinate. So we can
use an expression for the transmitted flux density jT = |T (E )|2 k/m. Then for any interval
with a, b > 1

2 L the quantity

1

jT

∫ b

a
|ψ(z; E )|2 dz = b − a

v
(3.21)

is just a passage time of the segment [a, b] by a particle with the velocity v = k/m. An
application of this quantity to the left from the barrier for a, b < − 1

2 L could be meaningless,
since, e.g., in the case of the full wave reflection from an infinite barrier the total flux vanishes
| jI| − | jR| = jT = 0. On the other hand, the reflected current also cannot be used since it
vanishes for the free particle motion. Thus, in order to construct a relevant time-quantity for a
particle moving in the segment [a, b] with a, b < − 1

2 L we divide the squared wave function
by the incident current

1

jI

∫ b

a
|ψ(z; E )|2 dz = b − a

v
(1 + |R|2)+ �

k v
|R| sin(2 k z/� − φR)

∣∣∣b
a
. (3.22)

The first term represents the passage time of the incident wave in the forward direction through
the segment [a, b] (the unity in the brackets) and the passage time of the reflected wave in the
backward direction (|R2| in the brackets). For a fully opaque barrier |R| = 1 we obviously
get 2(b − a)/v. The second term appears due to the interference of the incident and reflected
waves. It can be neglected only in the short de Broglie wavelength limit �/k � (b − a).

Another approach to the definition of time is to introduce an explicit ‘clock’—a
microscopic device characterized by a simple time variation with a constant well-defined
period—which is weakly coupled to a quantum system under investigation. From a change
of the clock’s ‘pointer’ one can then read off a duration of the process in the quantum
system measured in terms of the clock’s period. Such a procedure was proposed by Salecker
and Wigner in [70] for measurements of space–time distances. Peres in [71] extended this
concept to several quantum mechanical problems including a time-of-flight measurement of
the velocity of a free non-relativistic particle.

Back in 1966, Baz [65] proposed the use of the Larmor precession, as a measure of a
scattering time in quantum mechanics. He ascribed spin 1

2 and a magnetic moment μ to the
scattered particle and assumed the presence of a weak magnetic field B within the finite space
region of interest, e.g. within a range of potential. The difference in the spin polarization
before and after the region proportional to − 1

2 �ωL tL, where ωL = μB/� is the Larmor
frequency, gives the time the particle takes to traverse the region. For a 1D case this approach
was adopted by Rybachenko in [72]. In the framework of the time-dependent formalism the
spin-clock method was analyzed in [73].
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In [74] Büttiker showed that for a 1D-scattering problem the Larmor precession time
introduced in [65, 72] is equivalent to the dwell time

td(a, b,E ) = 1

jI

∫ b

a
|ψ(z; E )|2 dz, (3.23)

which tells us how long the incident current jI must be turned on to produce the necessary
particle storage within the segment [a, b]; see (3.22). This time is a quantum-mechanical
counter part of the classical 1D dwell time (2.2). Indeed, as follows from the Schrödinger
equation, the probability density given by the square of the wave function satisfies the
continuity equation, as for water in a clepsydra.

The value

δtd(a, b,E ) = td(a, b,E )− (b − a)/v (3.24)

shows the difference between the time which a particle spends in the segment [a, b] of the
potential and the time if the potential in this region were switched off.

For the case E > maxU the classical motion is allowed for any z and the time a particle
needs to move from −L/2 to +L/2—the classical traversal time—is

t (cl)
trav (E ) =

∫ +L/2

−L/2

dz√
2(E − U (z))/m

; (3.25)

cf. the definition of the classical sojourn time (2.4). However, when the energy is smaller
than a potential maximum, there appears an imaginary contribution to this quantity from the
integration between the turning points z1(E ) and z2(E ), which are solutions of the equation
U (z1,2) = E. The imaginary-time pattern is used in the so-called imaginary-time formalism,
being successfully applied in the problems of quantum tunneling through time-dependent
barriers; see the review [75]. Nevertheless the imaginary time can hardly be used as the typical
time for the passing of the barrier.

Reference [76] considered the electron–positron pair production within the imaginary-
time formalism and estimated the traversal time of the barrier as its length divided by the
velocity of light c (for relativistic particles). The inverse quantity ωtun ∼ |∇U |/mc separates
then two regimes of particle production in rapidly varying potentials (for ω > ωtun) and that
in static fields (for ω � ωtun). Similarly, Büttiker and Landauer [77] argued in favour of using
the quantity

t (BL)
trav (E ) =

∫ +L/2

−L/2

dz√
2|E − U (z)|/m =

∫ +L/2

−L/2

m dz

�(z,E )
(3.26)

for the description of the tunneling time trough rapidly varying barriers at non-relativistic
particle motion. Also, they conjectured using this value to estimate the traversal time of the
tunneling through stationary potential barriers. Reference [78] has shown that this time arises
as a standard dispersion of the tunneling time distribution. Support for the usage of (3.26) to
estimate the time of particle passage through barriers comes from analysis of the radiation
spectral density for charged particles traversing the barrier, which is determined by the ordinary
classical formula [79]: (∂Eω/∂ω)t ∝ e2ω2k2(tBL

trav)
2/m2, where tBL

trav is entered as the time of
the passing of the barrier region.

Also, one can formally construct an analogue of the phase time, as in equation (2.55) in
section 2, e.g., δtph,R(E ) = �

(
φR(E )−π

)
/E and δtph,T(E ) = �

(
φT(E )−π

)
/E, as time shifts

between incident and reflected and transmitted waves, but these time shifts are not associated
with observables.

Relevant quantities are the group times � dφR(E )/dE and � dφT(E )/dE, cf.
equation (2.11), similar to those we introduced in section 2. These quantities will be discussed
in more detail below.
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Another aspect of stationary problems relates to the description of bound states arising in
the case of attractive stationary potentials. Inside the potential well, i.e. for z ∈ [z1, z2], where
z1 and z2 are turning points, the semiclassical wave function can be written in two ways [80]:

ψ(scl)(z; E ) = C1√|�(z,E )| cos

(∫ z

z1

|�(z′,E )|dz′/� − φ<
)

(3.27)

or

ψ(scl)(z; E ) = C2√|�(z,E )| cos

(∫ z2

z
|�(z′,E )|dz′/� − φ>

)
, (3.28)

where φ< = φ> = π/4, provided the potential is a smooth function of z near the turning
points. Note that in the purely quantum case the phase shifts of in-going and out-going waves
for the bound states may depend on E. The condition of coincidence of these solutions yields
C1 = C2(−1)n and we get the Bohr–Sommerfeld quantization rule∫ z2

z1

|�(z,E )|dz = �(πn + φ< + φ>), n = 0,±1, . . . . (3.29)

From this rule for the passage time of the potential well one gets

t (scl)
trav (z1, z2,E ) = 1

2
P = �π

dn

dE
+ t<gr + t>gr, (3.30)

where P is the period of motion, dn
dE is the number of states per unit energy, t<gr = � dφ</dE,

t>gr = � dφ</dE and for the semiclassical motion t<gr + t>gr = 0. Replacing (3.28) with
appropriate normalization in (3.23) we get t (scl)

trav (z1, z2,E ) � td(z1, z2,E ).

Example: dwell time for a rectangular barrier

We apply the dwell time definition (3.23) to the wave function (3.4), (3.16) and calculate
the dwell time of the particle under the barrier. The incident current is jI = k/m and

td(−L/2,L/2,E ) = m

k

∫ +L/2

−L/2
{|C+|2 cosh2(� z/�)+ |C−|2 sinh2(� z/�)} dz

= m L

2 k
(|C+|2 − |C−|2)+ m

2 k

�

�
sinh(�L/�)(|C+|2 + |C−|2). (3.31)

We see that the dwell time contains two time-scales: one is the free traversal time m L/k and
the other is a purely quantum scale m�/k|�|. Namely, the former quantity determines the
traveling time for classically allowed motion with E � U . The internal wave function given
by equations (3.4) and (3.16), ψU , is expressed in terms of evanescent and growing functions
ψ
(evan)
U = 1

2 (C+ − C−) e−�z/� and ψ(grow)
U = 1

2 (C+ + C−) e+�z/�. Using equations (3.18) and
(3.20), after some algebra we split equation (3.31) into the terms:

t (evan)
d = m

k

∫ +L/2

−L/2

1

4
|C+ − C−|2e−2�z/�dz = m �

k�
cos2 δs

k2 + �2

2 �2
tanh(�L/�)

e�L/�

2 cosh(�L/�)
,

t (grow)
d = m

k

∫ +L/2

−L/2

1

4
|C+ + C−|2e2�z/�dz = m �

k�
cos2 δs

k2 + �2

2 �2
tanh(�L/�)

e−�L/�

2 cosh(�L/�)
,

t (evan)
d + t (grow)

d = m �

k�
cos2 δs

k2 + �2

2 �2
tanh(�L/�), (3.32)

and the correlation term

t (cor)
d = 1

2
Re {(C+ − C−)(C+ + C−)∗} L = m L

k
cos2 δs

(�2 − k2)

2�2 cosh2(�L/�)
. (3.33)
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δ
Figure 9. The dwell time (3.34) (left panel) and the interference time (3.88) (right panel) for the
rectangular barrier depicted as a function of the energy for various barrier lengths measured in units
l0 = �/

√
2 mU . The thin solid curve on the left panel shows the classical traversal time (3.25) for

the rectangular barrier.

Interestingly, the traversal time-scale ∝ L appears in an interference term t (cor)
d ∝ U between

evanescent and growing waves, whereas the quantum term appears in a sum of the dwell times
constructed from the pure evanescent and growing waves, t (evan)

d and t (grow)
d .

For tunneling, E < U , through a thick barrier, �L/� � 1, we have

td � t (evan)
d ,

since t (cor)
d /t (evan)

d ∼ t (grow)
d /t (evan)

d ∼ e−2�L/� � 1. The integral in t (evan)
d is determined by the

region near z = −L/2 (provided particles flow on the barrier from the left). Thus in this case
the dwell time of particles under the barrier is determined by the inflow near the left edge of
the barrier and does not describe particle transmission. This observation partially corrects the
statement in [8, p 7], that the dwell time of particles under the barrier ‘. . .does not distinguish
transmitted particles from reflected particles’ and ‘tells us the dwell or sojourn time in the
barrier regardless of whether the particle is transmitted or reflected at the end of its stay’.

Combining equations (3.32) and (3.33) we obtain

td(−L/2,L/2,E ) = m L cos2 δs

2 k

[
k2 + �2

�2

tanh(�L/�)

�L/�
− k2 − �2

�2

1

cosh2(�L/�)

]
. (3.34)

The behavior of this value is illustrated in figure 9, left. We see that for E > U expression
(3.34) exhibits peaks, when the system gets stuck above the barrier in resonance states, for
which the barrier becomes effectively absolutely transparent (maxima of |T |2 in figure 8). The
resonance energy is determined by the condition |�|L/� = π n for an integer n > 0. The peak
heights increase with the barrier thickness as (m L/k)[1 + 2L2/(l2

0 n2 π2)]. The time (3.25)
of the traversal of the distance L at resonance energies can be related to the density of the
resonance states:

t (scl)
trav = Lm

|�| = π�
dn

dE
. (3.35)

For E � U we get

td(−L/2,L/2,E ) = mL

k

[
1 + U

2 E
− sin(2�L/�)

l2
0

4L2

(
U

E

)3/2

+ O

(
U2

E2

)]
. (3.36)
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As we see from figure 9, for E > U the dwell time oscillates around the classical traversal
time and approaches it for E � U as∣∣t (cl)

trav (−L/2,L/2,E )− td(−L/2,L/2,E )
∣∣ < mL

k

[
l2
0

4L2

(
U

E

)3/2

+ O

(
U2

E2

)]
. (3.37)

For a broad barrier in the limit |�|L/� � 1 and for E � U we have for the dwell time

td(−L/2,L/2,Ep) � t (cor)
d � m L

k

2 k2 (k2 + |�|2)
[(|�|2 − k2)2 sin2(|�|L/�)+ 4|�|2k2]

. (3.38)

As follows from this expression the dwell time exceeds the classical free traversal time
tfree
trav = mL/k.

For E = U and arbitrary L the dwell time is

td(−L/2,L/2,E = U ) = 4

3

m L

k

1 + 3l2
0/L

2

1 + 4l2
0/L

2
. (3.39)

In the tunneling regime E < U the dwell time starts from zero at E = 0, increases with the
increase of E and reaches the free traversal time mL/k at

E1 = U
1 + 3 b l2

0/L
2

1 + 4 b l2
0/L

2
, b ≈ 2.5484. (3.40)

It is interesting to note that the dwell time is always smaller than the classical traversal time
for energies of the scattered particle E < U for a thick barrier and E < 3

4U for a thin barrier.
Since in the tunneling regime the dwell time decreases with an increase of the barrier

depth, and td(E → 0) → 0, the dwell time cannot be an appropriate measure of the time
passage through the barrier.

3.3. The non-stationary problem: the scattering of a wave packet

The evolution of a quantum–mechanical system from the time moment t0 until the time
moment t is determined by the Hamilton operator: �(z, t) = exp(−iĤ (t − t0))�(z, t0). A
non-stationary quantum state, i.e. a state for which physical observables change with time,
thus, cannot be an eigenstate of the Hamiltonian. Otherwise the time variations reduce to a
phase factor exp(−i E (t − t0)), which does not enter observables. Hence, in order to describe
the passage time of some spatial interval by a quantum particle we need to deal with a wave
packet describing by a superposition of stationary states with various energies E, ψ(z; E ),

�(z, t) =
∫ ∞

0

dE

2π�
�(E )ψ(z; E ) e−i E t/�, (3.41)

with some �(E ) as the energy envelop function. Such a packet would necessarily have some
spatial extension, which is larger the smaller the energy spread of the states collected in the
packet is. As we discuss in this section, the mentioned delocalization makes determination of
the passage time of a spatial interval by a quantum particle a delicate problem.

As the stationary wave function ψ(z; E ) we can take the wave function (3.1), ψ(z; E ) =
Cψ1(z,E ). The normalization constant C can be determined from the relation∫ ∞

−∞
dzψ∗(z; E )ψ(z; E ′) = 2π�

√
2E

m
δ(E − E ′) = 2π� δ(k − k′), (3.42)

where k = √
2mE and k′ = √

2mE ′. The wave function of the wave packet (3.41) can be
normalized as ∫ ∞

−∞
dz |�(z, t)|2 =

∫ ∞

0

dE

2π�

√
2E

m
|�(E )|2 = 1. (3.43)
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Then the quantity

dWE =
√

2E

m
|�(E )|2 dE

2π �
(3.44)

is interpreted as the probability for the particle described by the wave packet to have the energy
within the segment [E,E + dE]. The average energy of the state, E, is given by

E =
∫ ∞

−∞
dx�∗(x, t)Ĥ�(x, t) =

∫ ∞

0

dE

2π�
E

√
2E

m
|�(E )|2. (3.45)

Similarly, the energy dispersion of the wave packet is given by

γ 2 =
∫ ∞

−∞
dx�∗(x, t) (Ĥ2 − E

2
)�(x, t) =

∫ ∞

0

dE

2π�
(E2 − E

2
)

√
2E

m
|�(E )|2. (3.46)

Formally, we can change an integration variable from E to k = √
2 m E and rewrite the

distribution (3.44) as

dWE = |ϕ(k)|2 dk

2π �
, ϕ(k) = k

m
�(k2/2m), (3.47)

and the wave packet (3.41), as

�(z, t) =
∫ ∞

0

dk

2π�
ϕ(k) ψ(z; k2/2m) e−i k2t/2m�. (3.48)

We emphasize that the quantity |ϕ(k)|2 cannot be identified with a momentum distribution of
the state, since in general the wave function ψ(z; E = k2/2m) is not an eigenfunction of the
momentum operator. However, in the remote past, i.e. for large and negative t, when the peak
of the packet is at large and negative z � −L, we deal with a free wave packet. Then only
one term of the wave function (3.1) contributes to the integral (3.48). Indeed, only in the term
proportional to ei k z for z � −L the exponents under the integral in equation (3.48) can cancel
each other for z ∼ t k/m. Thus, in the past the maximum of the packet located far to the left
of the barrier6—an incident wave packet

�(z, t) ≈ �I(z, t) =
∫ ∞

0

dk

2π�
ϕ(k) eik z/� e−i k2t/2m�, (3.49)

moves to the right. In this limit the quantity |ϕ(k)|2 defines the asymptotic momentum
distribution in the packet. Note that there is always a small but finite probability for the
particle to be at any point of the z-axis.

The momentum average and variance are then given by

p = 〈k〉k, γ 2
p = 〈(k2 − p2)〉k. (3.50)

Here we use the notation

〈· · ·〉k =
∫ ∞

0

dk

2π �
(· · ·) |ϕ(k)|2 (3.51)

for the average over the momentum distribution. The average energy and momentum are related
as E = (p2 + γ 2

p )/2m. For evaluation of the k-averages (3.51) of a function f dependent on k
we can use the relation

〈 f (k)〉k ≈ f (p)+ 1

2
γ 2

p

d2 f (p)

dp2
= f (Ep)+

γ 2
p

2 m

d f (Ep)

dEp
+ γ 2

p p2

2 m2

d2 f (Ep)

dE2
p

, (3.52)

provided γp is small. We used equation (3.50) and in the second equality we changed variables
from p to Ep = p2/2m.

6 Had we taken the wave function (3.2) in equation (3.48) we would get that for large negative t the maximum of the
packet is located far to the right of the barrier and the packet proceeds to the left.
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The momentum profile function ϕ(k) is complex, ϕ(k) = |ϕ(k)| eiξ (k). The derivative of
its phase with respect to momentum, ξ ′(k), determines the average coordinate of the incident
packet [81]

z̄I(t) =
∫ −L/2

−∞
dz z|�I(z, t)|2

/∫ −L/2

−∞
dz |�I(z, t)|2 ≈ z̄(as)

I (t) =
∫ +∞

−∞
dz z|�I(z, t)|2

=
〈
− �ξ ′(k)+ k

m
t

〉
k

= 〈−�ξ ′(k)〉k + vI t, vI = p

m
. (3.53)

Note that the second approximate equality in the first line is valid, if at time t the packet is
located almost entirely to the left of the barrier. It is valid for γp(−z0 + L) � � for large
negative t. The derivation of this relation is given in appendix C. Let us fix the phase ξ (k) so
that in the remote past at t0 the packet center was at z0 = vI t0, then −�ξ ′(k) = z0 − k t0/m
and therefore 〈−�ξ ′(k)〉k = 0.

The evolution of the packet width in the coordinate space is determined by the function
ϕ(k) as

z2
I (t)− z̄2

I (t) ≈ �

4π
|ϕ(0)|′|ϕ(0)| + �

2

〈( |ϕ(k)|′
|ϕ(k)|

)2〉
k

+
〈(

�ξ ′(k)− k

m
t

)2〉
k

−
〈(

�ξ ′(k)− k

m
t

)〉2

k

. (3.54)

For the description of a remote solitary incident packet moving to the right with an
initial average energy � E the envelop function �(E ) must be sharply peaked at E = E,
or equivalently for the description of the packet moving with the average momentum p the
function ϕ(k) must be sharply peaked at k = p. If the widths of the peaks of the functions
�(E ) and ϕ(k) are sufficiently small, i.e. γp � p and γ � E, the lower limit in all momentum
and energy integrations can be extended to −∞. Often, the normalized momentum profile
function is chosen in the Gaussian form

ϕ(k) =
(

2π �
2

γ 2
p

)1/4

exp

(
− (k − p)2

4 γ 2
p

+ i ξ (k)

)
. (3.55)

Then, using −�ξ ′(k) = z0 − k t0/m we find from equation (3.54)

z2
I (t)− z̄2

I (t) = �
2

4 γ 2
p

+ γ 2
p

m2
(t − t0)

2, (3.56)

where we used that for a narrow packet |ϕ(0)| → 0. We recover the well-known result that the
width of a free packet increases with time. For the typical time of the smearing of the packet
we immediately get t − t0 ∼ tsm, where

tsm = � m/γ 2
p . (3.57)

The wave packet (3.49) contains only modes with positive momenta and describes a
system which propagates freely from left to right with the center moving with the velocity vI,
see equation (3.53). If we define the probability of finding the particle to the left from some
finite coordinate z′, i.e. for any z < z′,

Pz′ (t) =
∫ z′

−∞
dz|�I(z, t)|2,

it must vanish for very large t: Pz′ (t → ∞) = 0. One would also expect this probability to be
a monotonically decreasing function of time, which according to the continuity equation

dPz′ (t)

dt
= − j(z′, t)
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implies that the current flowing through the point z′ is positive at any moment of time. It was
noted already by Allcock in [60] that this is not always the case. However, the detailed analysis
of such a possibility was conducted by Bracken and Melloy much later in [82].

Following [82], consider a freely moving wave packet (3.49) with the momentum profile
function

ϕp(k) =
(

27π �

p

)1/2 k

p
e− 3k

2p , p > 0. (3.58)

This function is normalized as 〈 1 〉k = 1 and corresponds to the average momentum 〈 k 〉k = p
with the variance 〈 (k2 − p2) 〉k = p2/3. The wave function at t = 0 can be easily calculated
by

�I;p(z, 0) =
√

4 p/(3π�)(
1 − i 2

3
p z
�

)2 (3.59)

and describes the symmetrical distribution centered at z = 0 with the width �z2 =
9�

2/(4p2) ≡ �2
z . We note that the larger p is the smaller is the spatial width of the packet.

The current corresponding to the wave function (3.59) is equal to

jI;p(z, 0) = J [�I;p(z, 0)] = 4

πm�

4p2/(9�
2)(

1 + 4p2z2

9�2

)3 = jI;p(0, 0)(
1 + z2

�2
z

)3 , jI;p(0, 0) = 4

πm��2
z

(3.60)

and is always positive.
Consider now the normalized packet which is a superposition of two packets (3.58) with

momenta p and αp, α > 1,

ϕ(k) = ϕp(k)+ Aϕα p(k)√
1 + A2 + 2 Aχ3

, χ = 2α1/2

1 + α , (3.61)

where A is a real number. The mean momentum for this packet is equal to

〈k〉k = 1 + α A2 + 2 Aα1/2 χ4

1 + A2 + 2 Aχ3
p.

Using the superposition of the wave functions (3.59)

�I(z, 0) = �I,p(z, 0)+ A�I,αp(z, 0)√
1 + A2 + 2 Aχ3

, (3.62)

we obtain the expression for the current

jI(z, 0) = jI,p(z, 0)+ A2 jI,αp(z, 0)

+ 2
A

αχ

jI,1(z, 0)

jI,1(0, 0)
jI,αp(z, 0)

(
1 + α z2

�2
z

) ([
1 + α z2

�2
z

]2

− 3 (α − 1)2
z2

�2
z

)
,

(3.63)

which is not necessarily positive if A < 0. Indeed, for z = 0 the expression for the current
reduces to

jI(0, 0) = jI;1(0, 0) (1 + Aα1/2) (1 + Aα3/2), (3.64)

and, as we see, it is negative for −α−1/2 < A < −α−3/2. The current remains negative within
a narrow interval of z

z2

�2
z

� (1 + Aα1/2)(1 + Aα3/2)

3(1 + A2α4 + Aα1/2(α + 1)(2(α − 1)2 + α)) <
χ2/(3α)

16 − (χ − √
8)2

� 1. (3.65)
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Figure 10. The current (3.3) constructed from the wave function (3.49) with the momentum profile
function (3.61) for α = 2 and A = − 3

4
√

2
as a function of time for various values of z (left panel)

and as a function of coordinate for various moments of time (right panel).

This phenomenon is called in the literature the quantum back-flow effect [83]. It has a purely
quantal nature owing to the wave interference, the third term in equation (3.63). The occurrence
of the negative current depends on a fine tuning of parameters of the packet superposition (3.61).
As we see from equation (3.64), the larger is the difference between the averaged momenta of
two wave packets contributing to (3.61), i.e. the larger is α, the narrower is the interval of the
values of A, for which the effect exists.

The current (3.3) constructed with the time-dependent wave functions (3.49) with ϕ(k)
given by equation (3.61) for α = 2, and A = − 3

4
√

2
is shown in figure 10 as a function of time

for several coordinates (left panel) and as a function of coordinate for several moments of time
(right panel). We see (left panel) that the negative current exists for a very short time interval
for a fixed coordinate z. There are special values of z for which the current is positive for all t,
in our case it is z ∼ 2. The intervals of z, where j(z, t) < 0, move to higher z with an increase
of time and the negative current amplitude becomes smaller and smaller, see the right panel
of figure 10.

It was pointed out in [82] that the total probability flux over the period of negative current,
e.g. [t1, t2], is limited from below∫ t2

t1

j(z, t) dt � −cbm. (3.66)

Interestingly, although the back-flow effect is of purely quantum origin, the parameter cbm

does not depend on � and is universal being independent of the particle mass and the time
duration of the effect. The numerical calculations [84] give the value cbm ≈ 0.038 452. In [85]
it was proposed how the back-flow effect can be experimentally observed with the help of
Bose–Einstein condensates.

The quantum back-flow effect can also be viewed with the help of the Wigner density
function

W (z, v, t) = m

2π�

∫ ∞

−∞
�∗
(

z − 1

2
y, t

)
�

(
z + 1

2
y, t

)
e−imvy/� dy, (3.67)

for the free particle W (z, v, t) = W (z − vt, v, 0).
For wave functions of the form (3.48), which lead to W vanishing for negative values of

v, the current density (3.3) can be expressed as

j(z, t) =
∫ ∞

0
W (z − vt, v, 0) v dv. (3.68)
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The appearance of negative values of j, despite of the restriction of the integral to the positive
values of v, is the direct consequence of the Wigner function taking negative values. We return
to the question of the sign of the Wigner density in section 6.4.

So far we have considered the wave packets which occupy the whole space at any
moment of time. Special attention should be paid to problems when the wave function is
initially confined to a particular space region—the so-called cut-off wave initial conditions
[86]. The simplest of such problems was considered by Moshinsky in his seminal paper [87].
He considered a monochromatic beam of free particles moving parallel to the z-axis from left
to right and stopped by a perfectly absorbing shutter at z = 0. The shutter promptly opens at
t = 0 and the particle beam proceeds freely to the right. One may ask the question: How fast
are the particles at a certain (registration) point z > 0? The initial wave function is

�(z, 0) =
{

ei p z/�, z < 0
0, z � 0.

(3.69)

The solution of the free time-dependent Schrödinger equation with the initial condition (3.69)
is given by

�(z, t) =
∫ +∞

−∞

dk

2π�
ϕ̃(k) ei k z/�−ik2 t/2m� (3.70)

where the momentum envelop function is

ϕ̃(k) =
∫ +∞

−∞
dz�(z, 0) e−i k z/� = i�

k − p
. (3.71)

The k-integration in equation (3.70) can be performed analytically [87] with the result
expressed through the complementary error function

�(z, t) = 1

2
exp

[
i

p x

�
− i

p2 t

2m�

]
erfc

[√
m

2�t i
(z − pt/m)

]
. (3.72)

Here
√

i = exp(iπ/4). The relative probability density to register the particles at the point z
at the moment of time t is given by

P(z, t) = |�(z, t)|2 = 1

2

([
1

2
+ C(u)

]2

+
[

1

2
+ S(u)

]2)
, u =

√
p z

π�

√
T

t

(
t

T
− 1

)
.

(3.73)

Here T = m z/p is the classical time needed for a particle with the velocity p/m to reach the
point z (z > 0), if at t = 0 the particle was at the point z = 0. The functions C(u) and S(u) are
the standard Fresnel integrals

C(u) =
∫ u

0
cos(πξ 2/2) dξ, S(u) =

∫ u

0
sin(πξ 2/2) dξ . (3.74)

In the classical limit � → 0 or for very large distances from the shutter, z p/� � 1, the
probability P tends to the classical result P → P(cl) = θ (t − T ). However, for any finite value
of z p/� the probability that the particle is registered in the point z at the time t = T is smaller
then the classical value, P(z, t = T ) = 1/4. In figure 11 we show the probability (3.73) as a
function of time for various coordinates. We see that P reaches its classically expected value
of one for the first time at t1 > T and oscillates for t > t1 around unity with a decreasing
amplitude and a frequency increasing as ∼ (t/T − 1)2zp/2 T �. This pattern resembles the
Fresnel diffraction of light from the edge of a semi-infinite plane, therefore in [87] it was
coined as the diffraction in time. The important difference of the quantum mechanical result
(3.73) from the classical limit is that even for t < T there exists a finite probability to register
the particles. For example, for zp/� ∼ 1, P � 17% for 0.5 � t/T � 1. For vanishing t, P(z, t)
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Figure 11. The relative probability density of observing particles with momentum p > 0 initially
confined to the negative z and released at t = 0, see equation (3.69), at a given point z > 0 as a
function of time after the release. The time is measured in units of T = z m/p. The probability is
calculated according to equation (3.73) for several values of z p/�.

increases again and reaches 1/4. Here, we should bear in mind that in our non-relativistic
framework c → ∞, whereas in a relativistic approach we would certainly get the restriction
t > z/c.

Let τ be a time of shutter opening. The appearance of the quantum precursor is related
to the fact that after the prompt opening of the shutter the particle beam ceases to be
monochromatic. The prompt perturbance of the system (a change of boundary conditions
can be also considered as a perturbance) induces transitions among the initial state with the
momentum p and the states with momenta k, such that τ |k2 − p2|/(2m�) � 1, see section 41
in [52]. The relative transition probability is proportional to |ϕ̃(k)|2 = �

2/(k− p)2. Obviously,
the modes with k > p reach the point z during the times smaller than T .

The free case problem considered by Moshinsky [87] was generalized in [88] for the
solution of the time-dependent Schrödinger equation for tunneling through an arbitrary
potential localized within some spatial interval. To investigate the time evolution of the
transmission probability density for the tunneling, the authors of [89] considered analytic
solutions to the time-dependent Schrödinger equation for the cut-off wave initial conditions,
e.g., selected as,

�(z, t = 0) =
{

eip(z+L/2)/� − e−ip(z+L/2)/�, z � −L/2

0, z > −L/2.
(3.75)

They demonstrated that in this particular case for a rather opaque barrier (for a barrier opacity
parameter α = L

√
2mUmax/� > αc) the probability density exhibits two evolving structures.

One refers to the propagation of a forerunner, while the other consists of a semiclassical
propagating wavefront. Forerunners disappear for α < αc. Moreover, forerunners vanish
at asymptotically long times and distances from the interaction zone (−L/2 < z < L/2),
whereas the propagating wavefront tends to the stationary solution. It proves to be the case
that forerunners exist for td(− L

2 ,
L
2 ,E ) < tfree

trav = Lm/p.
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3.4. Characteristics of time for the scattering of a wave packet with negligibly small
momentum uncertainty

Consider a wave packet (3.48) prepared far away from the potential region, so that the packet
could be made sufficiently broad to assure a small momentum uncertainty and at the same
time it would take a long time for the packet to reach the potential barrier. Thereby, for the
long time periods considered here we are able to neglect forerunners and the negative current
term mentioned above. For the single Gaussian wave packet (3.55) the current density (3.3)
is always positively definite for any time. After the wave packet has reached the barrier it is
split into the reflected wave packet and two forward-going (evanescent and growing) waves
propagating under the barrier, which outside of the barrier transform to a transmitted wave
packet.

The transmitted packet is determined by [90]

�T(z, t) =
∫ ∞

0

dk

2π�
ϕ(k)|T (E )|eiφT(E ) eikz/�−iEt/�. (3.76)

The reflected packet moving backwards is

�R(z, t) =
∫ ∞

0

dk

2π�
ϕ(k)|R(E )|eiφR(E ) e−ikz/�−iEt/�, (3.77)

where, as before, E = k2/2m.
Also, one can introduce two measures of time that could characterize the wave propagation

within the potential region. Consider the difference of the time, when the maximum of the
incident packet (3.49) is at the coordinate z = −L/2, and the time, when the maximum of the
transmitted packet (3.76) is at z = +L/2, and the difference of the time, when the maximum
of the incident packet and the maximum of the reflected packet (3.77) are at the same spatial
point z = −L/2. We call these time intervals the transmission and reflection group times, tT
and tR. The construction of the delay times goes back to pioneering works by Eisenbud [91],
Wigner [1] and Bohm [90]. According to the method of the stationary phase, the position
of the maximum of an oscillatory integral, as those in equations (3.49), (3.76) and (3.77), is
determined by the stationarity of the complex phase of the integrand. For a sufficiently narrow
initial momentum distribution, γp � p, we can write

tT(Ep) =
(

�ξ ′(p)+ L

2 vI
+ �

vI

d

dp
φT(Ep)

)
−
(

�ξ ′(p)− L

2 vI

)
= L

vI
+ �

dφT(Ep)

dEp
(3.78)

and

tR(Ep) =
(

�ξ ′(p)+ L

2 vI
+ �

vI

d

dp
φR(Ep)

)
−
(

�ξ ′(p)− L

2 vI

)
= L

vI
+ �

dφR(Ep)

dEp
, (3.79)

here and below Ep = p2/2m. For Ep � U , dφT,R(Ep)

dEp
→ 0 and tT(Ep) � tR(Ep) � L

vI
reduce

to the passage time of the distance L. However, interpretation of these times for E < U needs
special care. Recall that in the case of the tunneling the transmission and reflection group
times tT(Ep) and tR(Ep) are asymptotic quantities since they count time steps for events that
occur at z = −L/2 and z = L/2 rather than at the turning points. Moreover, as we shall see,
for tunneling through thick barriers the dependence of these times on L ceases.

One can introduce conditional transmission and reflection group times by multiplying the
times tT and tR with the transmission and reflection probabilities, respectively. Summing them
up we define a bidirectional scattering time, as the sum of the weighted average of transmitted
and reflected group delays [8]

tbs(Ep) = |T (Ep)|2 tT(Ep)+ |R(Ep)|2 tR(Ep). (3.80)
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This time can be also expressed through the induced, transmitted and reflected currents defined
for the stationary problem (see equation (3.3)),

tbs = jT
jI

tT + | jR|
jI

tR. (3.81)

For a symmetrical barrier, with the help of equations (3.9) and (3.10), we get

tbs(Ep) = tT(Ep) = tR(Ep) = �
dδs(Ep)

dEp
. (3.82)

We should emphasize a direct correspondence of the transmission and reflection group times
defined here to the classical group times defined in equations (2.21) and (2.64). For Ep � U ,
�

dδs(Ep)

dEp
→ L/vI.

There is a relation [92, 93] between the bidirectional scattering time tbs, equation (3.80),
and the dwell time td, equation (3.23), which follows from the general relation for the stationary
wave function (3.13) and definitions (3.78), (3.79):

td(−L/2,L/2,Ep) = tbs(Ep)− δti(Ep). (3.83)

The last term here is the interference time delay. It arises due to the interference of the incident
part of the wave function (the incident packet) with its reflected part. This term is of the same
origin as the last term on the left-hand side of equation (3.22),

δti(Ep) = − �

pvI
Im(R(Ep) e+i p L/�) = − �

pvI
|R(Ep)| sin(φR(Ep)+ p L/�). (3.84)

The interference time can be as positive as negative, so it represents a delay or advance of the
incident packet. This term δti is especially important for low energies (small momenta), when
the packet approaches the barrier very slowly. Taking into account that |T |2 + |R|2 = 1 we
can rewrite equation (3.83) in the form

td = |T |2 (tT − δti)+ |R|2 (tR − δti). (3.85)

The times (tT − δti) and (tR − δti) coincide with the Larmor times introduced by Baz’
and Rybachenko [65, 72] in the general case of asymmetric potentials. Naively [62], one
interprets result (3.85) as the time spent by the particle under the barrier (td) is the sum of
the tunneling traversal time in transmission tT − δti times the probability of transmission and
the tunneling traversal time in the reflection tR − δti times the probability of reflection. Such
an interpretation is actually false, since in quantum mechanics one should sum amplitudes
rather than probabilities [8]. Moreover, as we mentioned, for thick barriers td is almost entirely
determined by the behavior of the wave function on the left edge of the barrier and thereby
does not relate to the transmission process. Else, tT and tR are determined when the peaks of
packets are at z = ±L/2 rather than at the turning points and thereby they cannot control only
the tunneling.

Some authors, see [94–96], introduce tunneling transit times by dividing the probability
stored within the potential region by the local transmitted flux and the reflected flux

t̃T = 1

jT

∫ L/2

−L/2
dz|ψ(z,Ep)|2 = td

|T |2 , t̃R = 1

| jR|
∫ L/2

−L/2
dz|ψ(z,Ep)|2 = td

|R|2 , (3.86)

from where we get t−1
d = t̃−1

T + t̃−1
R . It follows from analogy with fluid mechanics: the local

velocity v(z) is related to the local density ρ = |ψ(z)|2 through j = ρv, see (2.2). Since
|T |2 is exponentially small for a broad barrier, t̃T is exponentially large in this case. It is
perfectly luminal and does not saturate with barrier length [93]. Reference [8] argues that
the quantities (3.86) characterize net-delays of transmitted and reflected fluxes rather than
tunneling times. Indeed the time t̃T is a property of the entire wave function made up of
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forward and backward-going components and thereby cannot be considered as the traversal
time of transmitted particles only [8]. Performing minimization of t̃T, [97] finds a variationally
determined tunneling time t̃min

T ∝ 1/|T |. Both t̃T and t̃min
T → ∞ for |T | → 0. Note that the

typical time, after which the particle can be observed with the probability of the order of one
to the right from the barrier, if it initially was to the left from the barrier, is indeed proportional
to 1/|T |2. But the time ∝ 1/|T |2 does not correspond to our expectations for the quantity
characterizing traversal time of the given particle from a to b. It is associated with the life-time
of metastable states, being in this case the tunneling particles treated as quasiparticles decaying
from a state on one side of the barrier into another state on the other side of the barrier [64].
This time represents a mean time, in which a certain likelihood of a tunneling event may
take place. After passage of this time it becomes probable that approximately a half of the
original particle density has managed to tunnel away. This does not reflect the actual time of
the tunneling.

Example 1. Group times for a rectangular barrier
The scattering phase for a rectangular barrier is given in equation (3.18). Substituting this

expression in equation (3.82) we find

tbs = tT = tR = L cos2 δs

2 vI

[
(p2 + �2)2

p2�2

tanh(�L/�)

�L/�
− p2 − �2

�2

1

cosh2(�L/�)

]
. (3.87)

The interference time (3.84) can be written as

δti = L

vI
cos2 δs

p2 + �2

2 p2

tanh(�L/�)

�L/�
. (3.88)

For Ep � U , performing expansion in Ep/U we have

δti ≈ 2
l0
vI

coth(L/l0)− l0
vI
(coth(L/l0)+ (8 coth(L/l0)− L/l0)/ sinh2(L/l0))

Ep

U
. (3.89)

The interference time is shown in figure 9, right, as a function of Ep/U for various barrier
lengths. As we see, the interference time is especially significant for small energies when the
incident packet approaches the barrier slowly. For Ep < U , δti > 0, for Ep > U , at some
energies δti becomes negative. For Ep � U , δti → 0 and tbs � td � L/vI.

Example 2. Group times in the semiclassical approximation
The wave function of the stationary scattering problem, which enters the wave packet

(3.41), can be written in the semiclassical approximation as follows [52]

ψ(scl)(z; Ep) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
m

|�(z,Ep)|
[
e

i
�

∫ z
z1

|�(z′,Ep)| dz′+iφ0 + e− i
�

∫ z
z1

|�(z′,E )| dz′−iφ0
]
, z < z1,√

D m
�(z,Ep)

e
∫ z2

z �(z′,Ep) dz′/�, z1 � z � z2,√
D m

|�(z,Ep)| e
i
�

∫ z
z2

|�(z′,Ep)| dz′+iφ0 , z2 � z,

D = exp

(
−2

�

∫ z2

z1

�(z′,Ep) dz′
)
, (3.90)

where z1 and z2 are the left and right turning points (z1 < z2) and the phase φ0 = π/4
for a smooth scattering potential, cf. equation (3.28). Note that in the framework of the
semiclassical approximation [52] it is legitimate to take into account only the evanescent wave
inside the barrier. Being derived with the same accuracy, the reflection coefficient equals unity.
Respectively, the incident current is then totally compensated by the reflected one and the
current inside the barrier is absent, whereas it is present outside the barrier for z > z2. This
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current non-conservation is inconvenient when we study particle propagation inside the barrier.
To recover the current conservation one should include the contribution of the growing wave
inside the barrier, despite this procedure being beyond the scope of the formal applicability
of the semiclassical approximation, see [7]. Similarly, in the non-equilibrium quantum field
description one introduces so-called self-consistent approximations to keep the conservation
laws on an exact level, see [33–37] and the discussion in section 6.

Repeating the procedure that leads to equations (3.78) and (3.79) from (3.90) we obtain

t (scl)
T =

(
�ξ ′(p)+ 1

vI

d

dp

∫ z

z2

|�(z′,Ep)| dz′
)∣∣∣∣

z=z2

−
(

�ξ ′(p)+ 1

vI

d

dp

∫ z

z1

|�(z′,Ep)| dz′
)∣∣∣∣

z=z1

= 0,

t (scl)
R =

(
�ξ ′(p)+ 1

vI

d

dp

∫ z

z1

|�(z′,Ep)| dz′
)∣∣∣∣

z=z1

−
(

�ξ ′(p)− 1

vI

d

dp

∫ z

z1

|�(z′,Ep)| dz′
)∣∣∣∣

z=z1

= 0. (3.91)

We see that within semiclassical approximation t (scl)
T = t (scl)

R = t (scl)
bs = 0, if we compare the

moments of time, when the maxima of the packets are at the turning points. This was first
announced in [98] but basing on this fact concluded that the tunneling time in the semiclassical
approximation is zero. In our opinion, being zero, the quantity t (scl)

T , as well as tT, can hardly
be considered as an appropriate characteristic of the time passage of the barrier. The values
t (scl)
T = t (scl)

R = 0 just show that the delay of wave packets within the region of finite potential
appears due to purely quantum effects, to vanish in the semiclassical approximation. It also
demonstrates that in the case of the tunneling the group delays are accumulated in the region
near the turning points where the semiclassical approximation is not applicable.

Finally, we repeat that in general case the reflection group time shows nothing else than
a time delay between the formation of the peak of the reflected wave at z = −L/2 compared
to the moment, when the incident wave peak reaches z = −L/2. The transmission group
time demonstrates the difference in time, when the peak of the transmission wave starts its
propagation at z = L/2 and the incident wave peak reaches z = −L/2. In the semiclassical
approximation these time delays are absent.

3.5. Sojourn time for the scattering of an arbitrary wave-packet

So far we have considered the time-like quantities, which are precise only to the extent that
the packet has a small momentum uncertainty, as the group times (equations (3.78), (3.79) and
(3.82)) [62] and the dwell time (equation (3.23)), originated within the stationary problem.
Nevertheless it is possible to introduce another time-like quantity which measures how long
the system stays within a certain coordinate region. In classical mechanics the time, which a
system committing 1D motion spends within the segment [a, b], is determined by the integral
(2.3). In quantum mechanics the δ-function over the classical trajectory is to be replaced
with the quantum probability density |�(z, t)|2; see [99]. Now, if we consider a wave packet
starting from the left at large negative z for large negative t and proceeding to z = +∞, then
the time it spends within the segment [a, b] is given by the quantum mechanical sojourn time
defined as

tsoj(a, b) =
∫ +∞

−∞
dt
∫ b

a
dz|�(z, t)|2. (3.92)
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The packet wave function is normalized as (3.43). Between the dwell time and the sojourn
time there is a relation [100], see the derivation in appendix D,7

tsoj(a, b) =
∫ +∞

−∞

dk

2π�
|ϕ(k)|2td(a, b, k

2/2m) = 〈td(a, b, k2/2m)〉k. (3.93)

Using the wave function that obeys the Schrödinger equation and satisfies the continuity
equation

d

dt
|�(z, t)|2 = − d

dz
j(z, t), (3.94)

where j(z, t) = J [�(z, t)] with the current J defined in (3.3), we can rewrite the sojourn
time through the currents on the borders of the interval

tsoj(a, b) = −
∫ +∞

−∞
dt
∫ t

−∞
dt ′[ j(b, t ′)− j(a, t ′)]. (3.95)

From these relations we see that the sojourn time has the same deficiencies as the dwell time.
Namely, for a broad barrier both quantities demonstrate how long it takes for the particles to
enter the barrier from the left end, but they do not describe particle transmission to the right
end.

We now apply the relation (3.95) and the sojourn time definition to the wave function
(3.1). The total time, which the packet spends in the barrier region, −L/2 � z � L/2, is
tsoj(−L/2,L/2) = 〈

td(−L/2,L/2, k2/2m)
〉
k. As we show in appendix D the integration of

currents in equation (3.95) gives [81]∫ +∞

−∞
dt
∫ t

−∞
dt ′( j(L/2, t ′)− j(−L/2, t ′)) = −〈|T (E )|2 tT(E )〉k

−〈|R(E )|2 tR(E )〉k + 〈δti(E )〉k. (3.96)

Thus, in the case of an arbitrary momentum distribution we obtain a generalization of
equations (3.83) and (3.84):

tsoj(−L/2,L/2) = 〈td(−L/2,L/2,Ek)〉k = 〈|T (E )|2 tT(E )〉k + 〈|R(E )|2 tR(E )〉k − 〈δti(E )〉k.

(3.97)

Thereby, from the definition of the sojourn time we extract the same information as from
the definition of the dwell time but averaged over energies of the packet. We stress that both
quantities do not describe the time of the particle passage of the barrier.

3.6. The Hartmann effect

For energies above the barrier the proper time for the particle to pass the region of the potential
is the traversal time t (cl)

trav . Other times td(−L/2,L,Ep), tsoj(−L/2,L,Ep), tbs(Ep) introduced
above also appropriately characterize the particle motion. For energies well above the barrier,
E � U , we find t (cl)

trav � tbs(Ep) � td(−L/2,L,Ep) � L/vI. However there appear problems
with the interpretation of all these times, as is characteristic of a particle’s passage under the
barrier (for E < U).

In numerous works the dwell time was interpreted as the mean time the particle spends
under the barrier regardless of whether it is ultimately transmitted or reflected, see the
discussion in [8]. The link (3.85) between the dwell time and the group time suggested
a naive interpretation of the times tT − δti and tR − δti as the mean times the transmitted

7 Here it is worth to mention that it is possible to introduce time operators associated with the dwell time and sojourn
time, canonically conjugated to the system Hamiltonian, see [11, 83] and references therein.
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and reflected particles spend under the barrier. As we mentioned, such an interpretation is
based on a classical counting of possible outcomes of a scattering process in 1D, when an
incident particle can be either reflected or transmitted, cf. section IIIB in [62]. In accepting
such an interpretation of the group and dwell times one encounters a paradox. In order to
understand it more clearly consider tunneling (E < U) through a thick rectangular barrier
�L/� = √1 − Ep/UL/l0 � 1. From equations (3.18), (3.82) and (3.85) we find

td(−L/2,L/2,Ep) = tT(Ep)− δti(Ep) = tR(Ep)− δti(Ep) = p2

p2 + �2
�

dδs(Ep)

dEp
,

tbs(Ep) = tT(Ep) = tR(Ep) � �
dδs(Ep)

dEp
= 2

�

vI�
. (3.98)

The characteristic length entering these expressions is the quantum depth of particle penetration
inside the barrier region ∼�/� rather than the length of the barrier L. Therefore all these
characteristic times are reduced to the quantum time tquant ∼ �/vI� not proportional to the
barrier length L, as one could expect for a proper passage time of the distance L with a
constant velocity. This would mean that, being evaluated with the help of these times, the
average velocity of the particle passage of the barrier would exceed the speed of light for
sufficiently large L. Such a phenomenon first described in [13] was then called the Hartmann
effect. The effect survives independently of the specific form of the potential. The same effect
arises, if one uses the relativistic Dirac and Klein–Gordon equations instead of the Schrödinger
equation [101]. As Winful writes [8]: ‘Because of this apparent superluminality, there are some
who dismiss it as a relevant time-scale for the tunneling process. This is part of the motivation
for the ongoing search of other tunneling times.’

The Hartmann effect has not yet been observed for matter waves. However, one has
used the identity of the form of the Helmholtz equation for wave propagation in a bulk
inhomogeneous medium and the time-dependent Schrödinger equation, and studied the
tunneling of electromagnetic waves through a barrier. Reference [102] reported that a
superluminal tunneling of light was observed, which caused a vivid discussion in the literature,
see for example reviews [10, 11]. The group velocity may become superluminal and even
negative without any contradiction with causality [6, 63, 103]. General arguments [104] based
on unitarity and causality show that the peak of the transmitted pulse is constructed mainly from
the leading edge of the incident one. Namely, a pulse reshaping leading to apparent acausality
was found in absorbing or amplifying media whose relaxation times are long compared with
pulse duration. For a thorough analysis of the Hartmann effect and re-interpretations of the
experiments free of the problems of causality we refer the reader to the review of Winful [8].
The saturation of the group delay with the barrier length is explained by the saturation of the
stored energy. Winful’s argument to avoid the Hartmann effect is that ‘the transmitted pulse is
not the same entity as the incident pulse’. However such an interpretation does not answer the
question whether it is possible to get an appropriate time for the passage of the barrier, which
is proportional to its length. This problem has not yet been solved.

Let us first formulate arguments why the group times and the dwell time are not appropriate
quantities to measure the tunneling time. First of all the group times tT, tR and tbs ought to be
understood as asymptotic quantities (cf., [62, 63, 100]), which apply to events with distinct
wave packets measured, in reality, far from the barrier. Approaching the barrier, the incident
wave packet interferes with the reflected part of itself. One can extrapolate the time so that the
freely propagating incident wave packet would need to arrive at the left border of the potential
region (z = −L/2) in absence of the reflection. Similarly, the transmitted wave packet can
be extrapolated to the right border of the potential (z = L/2). One can of course extrapolate
further into the potential regions up to the turning points z1 and z2, which are determined
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by the equation U (z1,2) = Ep. All that one can deduce from such extrapolations is that if
the incident wave packet, being extrapolated from the past, reaches the point z = −L/2 at
t = t−, then the peak of the remote transmitted wave packet, being extrapolated backwards
from the future, occurs at the coordinate z = L/2 at the time t = t− + tT. One cannot say,
where the transmitted wave packet peak was at t < t− + tT and, thus, the group times do not
measure the traveling time from input to output. Reference [8] goes even further considering
the incident and transmitted wave packets as different entities arguing that there is no obvious
causal relation between the measurement of the incident packet somewhere to the left of the
barrier and the measurement of the transmitted packet to the right of the barrier. The problem
is even more subtle, if considering transmission one uses centroids zT(t) and zR(t) related to
the transmitted, incident and reflected wave packets, see below in section 3.7.

Another argument is against the use of equation (3.85) for the interpretation of the group
times tT and tR, as the transmission and reflection times [8]. The counting of possible outcomes
for the scattering of the packet on the barrier, as being either transmitted or reflected, is not
valid for a quantum system: a wave packet can be both transmitted and reflected. In quantum
mechanics one sums complex amplitudes rather than probabilities [63]. As we argued in the
example of the thick barrier, values tbs and td show time delays of the wave packet on the
barrier edge z = −L/2, not a life-time of a stored energy within the whole barrier region
escaping from both sides of the barrier. For example, as follows from equations (3.31)–(3.33)
the dwell time can be written as a superposition of the dwell times constructed separately
from the evanescent wave and the growing wave, t (evan)

d and t (grow)
d , and their interference,

t (cor)
d . For tunneling through a thick barrier, E < U and �L/� � 1, we have t (grow)

d /t (evan)
d � 1

and t (cor)
d /t (evan)

d � 1, therefore td � t (evan)
d . Thus, in this particular limit, knowing the value td,

one may only make conclusions on the delay of reflection but not on the delay of transmission.
These comments also concern the quantities (3.86), which, as argued in [8, 93, 97], could
characterize net-delays of transmitted and reflected fluxes.

Concluding, as Winful [8] writes: ‘The Hartmann effect is at the heart of the tunneling
time conundrum. Its origin has been a mystery for decades [7, 10, 105]. Its resolution would be
of fundamental importance as it would lead to conclusive answers regarding superluminality
and the nature of barrier tunneling.’ Our contribution to the resolution of the Hartmann paradox
is presented below. Since the origin of the problem is that the semiclassical local current is
absent for the under barrier motion (there is no propagating packet peak in under-the-barrier
motion), the solution is based on the particle transit time through the barrier being associated
with the time variation of the amplitude of the waves under the barrier, rather than with a
particle flux there, information on which one tries to extract considering the motion of the
peaks of the transmitted and incident wave packets.

3.7. Centroid transmission and reflection time delays and asymptotic motion of packets

The quantities tT and tR, equations (3.78) and (3.79), were found with the help of the stationary
phase approach. These times characterize the time delays within the segment [−L/2,L/2] in
transmission and reflection processes. Defining them we used the assumption that the position
of a particle can be identified with the position of the maximum of the wave packet. However,
it is not so easy to experimentally distinguish the peak position of a spatially broad packet.
Moreover information not only about the spatial distribution in the packet but also about its
average width is lost.

As a simple alternative, Hauge et al proposed in [81] to operate with the average
coordinates of the packets to specify the position of the particle and to study the motion
of the centroids of the incident, transmitted and reflected wave packets. The result depends
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on the packet width but only through average quantities zT,R,I(t). A price for simplicity is a
loss of information about specific energy distribution within the packet that results in a loss
of information about specific spatial distribution on a spatial scale �/γp. This is the minimum
length characterizing the centroid.

The average coordinate of the incident wave packet (equation (3.49)), i.e. the incident
centroid, zI(t), is given by equation (3.53). After the collision we deal with reflected and
transmitted packets (3.76) and (3.77) to the right (z > L/2) and to the left (z < −L/2) from
the potential region, respectively. The average coordinates of these packets—the transmitted
and reflected centroids—are defined as

zT(t) =
∫ +∞

L/2 dz z |�T(z, t)|2∫ +∞
L/2 dz|�T(z, t)|2

, zR(t) =
∫ −L/2
−∞ dz z |�R(z, t)|2∫ −L/2
−∞ dz|�R(z, t)|2

. (3.99)

Note that in relations (3.53) and (3.99) the centroid motions invoke the same time parameter t.
The moments when the particle enters the segment [−L/2,L/2] or leaves it, being reflected or
transmitted, can be specified by the requirement that the centroids are at some chosen positions
nearby or at the borders of the potential region. Comparing these moments of time one can
determine the delay times of the particle within the segment [−L/2,L/2] during the reflection
and transmission processes. In this way it is possible to study the corrections to the group
times (3.78) and (3.79) induced by the packet finite width and the change of the packet shape
in the process of tunneling and reflection.

The integral in equation (3.99) is difficult to calculate in general, as it requires a solution of
the time-dependent Schrödinger equation. Nevertheless one can derive some rigorous results
for the asymptotic time dependencies of the centroids [81]. If we consider sufficiently large
times, for which zT(t)� L/2 and zI(t), zR(t)� −L/2, then the transmitted packet is located
almost entirely to the right of the region of non-zero potential and the reflected packet is to
the left of it. In this case we can extend the integration limits in (3.99) to ±∞ and define the
asymptotic centroids of transmitted and reflected packets

z(as)
T (t) =

∫ +∞
−∞ dz z |�T(z, t)|2∫ +∞
−∞ dz|�T(z, t)|2

, z(as)
R (t) =

∫ +∞
−∞ dz z |�R(z, t)|2∫ +∞
−∞ dz|�R(z, t)|2

(3.100)

in analogy to the asymptotic centroid of the incident packet (3.53). From the definition (3.99)
follows that the centroid of the transmitted packet zT is an increasing function of the lower
integration limit L/2, indeed

∂

∂L
zT(t; L) = 1

2
|�(L/2, t)|2

∫ +∞
L/2 dz (z − L/2) |�(z, t)|2( ∫ +∞

L/2 dz|�(z, t)|2)2 > 0, (3.101)

as an integral of two positive non-zero functions cannot be equal zero. Similarly, we obtain
that the centroids of the incident and reflected packets are decreasing functions of the upper
integration limits, −L/2 in this case. From these inequalities immediately follows that

z(as)
T (t) ≡ zT(t; L = −∞) < zT(t; L/2), z(as)

R(I)(t) ≡ zR(I)(t; L = −∞) > zR(I)(t; L/2).

(3.102)

The difference between equations (3.99) and (3.100) increases, when z(as)
T (t) approaches L/2

and when z(as)
R(I)(t) approaches −L/2, and it becomes of the order of the spatial packet width,

i.e. ∼ �/γp, for the incident packet and ∼ �/γp,R(T) for the packets after scattering: the widths
of the transmitted and reflected packets can deviate from the width of the incident packet
after interaction, as we shall see in section 3.8. The width of the momentum distribution for

44



J. Phys. G: Nucl. Part. Phys. 40 (2013) 113101 Topical Review

transmitted and reflected packets can be calculated as the inverse spatial width of the packet
(in analogy to equation (3.54))

�
2

4γ 2
p,T

= [z(as)
T (t)

]2 − [z(as)
T (t)

]2
,

�
2

4 γ 2
p,R

= [z(as)
R (t)

]2 − [z(as)
R (t)

]2
. (3.103)

Taking the packet widths into account, we can parameterize the centroid motion as

zT(t) = z(as)
T (t)+ ςT

�

γp,T
fc
(
γp,T |L/2 − z(as)

T (t)|/�), t > 0, zT(t) > L/2,

zR(t) = z(as)
R (t)− ςR

�

γp,R
fc
(
γp,R |L/2 + z(as)

R (t)|/�), t > 0, zR(t) < −L/2,

zI(t) = z(as)
I (t)− ςI

�

γp
fc
(
γp |L/2 + z(as)

I (t)|/�), t < 0, zI(t) < −L/2, (3.104)

where ςI(R,T) are some positive constants of the order of unity and the transition to the
asymptotic motion is controlled by the function fc(ζ ): fc(ζ � 1) ∼ 1 for 0 � ζ � 1
and fc vanishes for ζ � 1. For the Gaussian momentum distribution (3.55), which leads
to the Gaussian spatial form of the wave packets, we find ςI = ςT = ςR = 1/

√
2π and

fc(ζ ) = exp(−2ζ 2)/ erfc(−√
2ζ ), where erfc stands for the complementary error function.

We can proceed further with the evaluation of the integrals (3.100) (see appendix C), and
obtain the results for arbitrary momentum distribution ϕ(k) [81]:

z(as)
T (t) = 〈(−�ξ ′(k)− �φ′

T(k)+ t k/m)〉k,T, z(as)
R (t) = 〈(�ξ ′(k)+ �φ′

R(k)− t k/m)〉k,R.

(3.105)

Here we introduce the averaging over the momentum weighted with the transmission or
reflection probability

〈(· · ·)〉k,T = 〈|T (E )|2(· · ·)〉k

〈|T (E )|2〉k
, 〈(· · ·)〉k,R = 〈|R(E )|2(· · ·)〉k

〈|R(E )|2〉k
. (3.106)

Recall that the momentum averaging 〈· · ·〉k is defined in equation (3.51). The evaluation of
the T -weighted k-averages (3.106) for small γp can be done with the help of the relations

〈 f (k)〉k,T ≈ f (p)+ 1

2
γ 2

p

d2 f (p)

dp2
+ γ 2

p

d f (p)

dp

d

dp
log |T (p)|2. (3.107)

Here the primes mean derivatives with respect to the momentum. The analogous relation can
be written for the R-weighted k-average. We can also use the relation, which holds up to the
order γ 2

p :

〈 f (k) g(k)〉k,T(R) ≈ 〈 f (k)〉k,T(R)〈g(k)〉k,T(R) + γ 2
p f ′(p) g′(p), (3.108)

where f (k), g(k) are arbitrary functions. For the packet widths defined in equation (3.103) we
obtain now, using equations (C.12) and (C.13) of appendix C,

�
2

γ 2
p,T

=
〈
�

2

[
d

dk
log(|ϕ(k)||T (k)|)

]2〉
k,T

+
〈(

�ξ ′(k)+ �φ′
T(k)−

k

m
t

)2〉
k,T

−
〈
�ξ ′(k)+ �φ′

T(k)−
k

m
t

〉2

k,T

,

�
2

γ 2
p,R

=
〈
�

2

[
d

dk
log(|ϕ(k)||R(k)|)

]2〉
k,R

+
〈(

�ξ ′(k)+ �φ′
R(k)−

k

m
t

)2〉
k,R

−
〈
�ξ ′(k)+ �φ′

R(k)−
k

m
t

〉2

k,R

. (3.109)
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First of all, from these expressions we see that asymptotically reflected and transmitted
centroids move with velocities which differ from the velocity of the incident packet. From
(3.105) we get

vR = dz(as)
R (t)

dt
= −

〈
k

m

〉
k,R

= pR

m
, vT = dz(as)

T (t)

dt
=
〈

k

m

〉
k,T

= pT

m
. (3.110)

For a sufficiently narrow initial momentum distribution ϕ(k) peaked around p with the
dispersion γp, see equations (3.50), (3.52), with the help of equation (3.52) we find

vR ≈ −vI

(
1 + 2

γ 2
p

m

d

dEp
log |R(Ep)|

)
, vT ≈ vI

(
1 + 2

γ 2
p

m

d

dEp
log |T (Ep)|

)
. (3.111)

In the case of the tunneling through a thick barrier the expansion (3.111) holds for
γp � √

�|�|/L.
From figure 8 we see that for Ep < U (tunneling regime)8 the transmission amplitude

|T | is an increasing function of energy, therefore the reflection amplitude |R| decreases with
an energy increase. Hence in the tunneling for the transmitted packet vT > vI, while for the
reflected packet |vR| < vI. The reason for this phenomenon is obvious, the barrier acts as a
filter allowing higher probability penetration for the modes with higher energies. This serves
as an argument against a direct comparison of characteristics of the transmitted and incident
packets without a normalization to the characteristics of the corresponding stationary problem.

Using equations (3.107) and (3.108) we can rewrite expressions for the asymptotic centroid
of the transmitted packet (3.105) as follows:

z(as)
T (t) ≈ 〈(−�ξ ′(k))〉k,T + vT

|vT|L + vT (t − tT)+ vI�
γ 2

p

m

d2δ(Ep)

dE2
p

, tT =
〈
�

dδs(E )

dE

〉
k,T

.

(3.112)

We see that the centroid motion is delayed by the time tT, which is the averaged group time
(3.82). From equation (3.109) the momentum width of the transmitted packet including γ 2

p
corrections is given by

1

γ 2
p,T

� 1

γ 2
p

− 2
d2

dp2
log |T (k)|. (3.113)

The corresponding expressions for the reflected centroid differ only in the subindex ‘R’. Note
that the second term in equation (3.112) will change sign if we replace vT with vR.

The centroid transmission and reflection time delays can be defined as

t (cen)
R = τ (R)− − τ (I)− , t (cen)

T = τ (T)+ − τ (I)− , (3.114)

where τ (T)+ is the time when the transmitted packet emerges to the right from the potential
region, τ (I)− is the time when the incident packet enters the potential region and τ (R)− is the
time when the reflected packet emerges to the left from the potential region. Quantification
of the emergence moments requires some care. In [81, 100] the authors used the asymptotic
expressions (3.105) and (3.53) and extrapolated them right up to the borders of the region
of non-zero potential z = ±L/2, going thereby beyond their application domain, since the
correction terms in equations (3.104) cannot be neglected for those z. Moreover, from the very
definitions of the centroids (equation (3.99)) one can easily see that zT(t) can never reach the
point z = +L/2 and zR(t), the point z = −L/2. To avoid this problem we are forced to step

8 For U − Ep � γ one cannot distinguish between a tunneling regime and particle motion above the barrier. To deal
with pure tunneling one should assume that U − Ep � γ .
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away from the borders of the region of non-zero potential by a quantity ∼�/γp and define τ (I)− ,
τ
(R)
− and τ (T)+ from relations

z(as)
I (τ

(I)
− ) = −L

2
− ς̃I

�

γp
, z(as)

R (τ
(R)
− ) = −L

2
− ς̃R

�

γp,R
, z(as)

T

(
τ
(T)
+
) = +L

2
+ ς̃T

�

γp,T
.

(3.115)

The constants ς̃I,R,T are positive and ς̃I,R,T ∼ ςI,R,T ∼ 1. Note that for the Gaussian packets at
the time moments defined by these conditions with ς̃I,R,T = ςI,R,T, the maxima of the packets
are located exactly at the barrier borders z = ±L/2.

Let us use such initial wave packet distributions that correspond to �ξ ′(k) = z0 − k t0/m,
see equations (3.53). Then the solutions of equations (3.115) are

τ
(I)
− = − 1

vI

(
L

2
+ ς̃I�

γp

)
,

τ
(R)
− = − 1

vR

(
L

2
+ ς̃R�

γp,R

)
− 1

vR

〈
k

m
�

d

dE
φR(E )

〉
k,R

,

τ
(T)
+ = 1

vT

(
L

2
+ ς̃T�

γp,T

)
+ 1

vT

〈
k

m
�

d

dE
φT(E )

〉
k,T

. (3.116)

Substituting equation (3.9) into equations (3.116) for the centroid reflection and transmission
time delays (3.114) we find

t (cen)
R = tform,R + L

2

vI − |vR|
vI |vR| + 1

|vR|
〈

k

m
�

dδs(E )

dE

〉
k,R

,

t (cen)
T = tform,T + L

2

vT − vI

vIvT
+ 1

vT

〈
k

m
�

dδs(E )

dE

〉
k,T

, (3.117)

where we introduced new quantities

tform,R = tform,I + ς̃R�

γp,R |vR| , tform,T = tform,I + ς̃T�

γp,T vT
, tform,I = ς̃I�

γp vI
, (3.118)

which can be called the wave packet formation times. These quantities characterize the time
needed to the packets to ‘complete the scattering event’, i.e., enter the potential zone and
emerge from it. We note that t (cen)

R 
= t (cen)
T even for a symmetrical barrier in contrast to the

group times (3.82). These times show averaged passage times by particles of the typical spatial
packet length �/γp.

Due to performed averaging, in dealing with centroids one loses information about specific
forms of spatial distribution in the packet on a scale ��/γp, which could be extracted,
if one worked with non-averaged spatial distributions. The mentioned uncertainty is small
provided the formation times are shorter than other quantities in (3.118), for γp � |�|,
i.e. when the incident wave packet is very narrow in space and broad in momentum. Then
tform,R(T) � tquant ∼ �/vI|�| and the formation times in equation (3.117) can be neglected. In
this case the wave packet is well localized spatially and the centroids can serve as appropriate
characteristics of the particle position. However, unfortunately, for the case of large γp we
cannot speak further about tunneling, since the large part of the wave packet propagates above
the barrier.

In contrast, for a very narrow momentum distribution (γp � |�|) we would expect to
recover previously obtained results for the group times (3.82) and (3.80). The latter quantities
determined with the help of the packet peaks (by method of the stationary phase) do not
depend on the widths of the packets. Therefore, to make both approaches compatible we have
to subtract from τR,T formation times being divergent for γp → 0. This reflects the fact that
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the spatially broad packet needs a very long time to complete the scattering, in line with the
uncertainty relation. In the limit γp → 0 from equation (3.117) we obtain

vT ≈ |vR| ≈ vI, t (cen)
T − tform,T ≈ t (cen)

R − tform,T ≈ tbs = �
dδs(Ep)

dEp
. (3.119)

Now, let us apply results (3.111) and (3.117) to the case of a narrow momentum distribution
(small γp) and a very thick rectangular barrier �L/� � 1. The transmission and reflection
amplitudes (3.19) and their log-derivatives can be approximated as

|T (Ep)| ≈ 4 � p

�2 + p2
e−�L/�, |R| ≈ 1,

d

dEp
log |T (Ep)| = m L

� �
+ m

p2
− m

�2
,

d

dE
log |R(Ep)| = 0 (3.120)

and

vT � vI

[
1 + 2γ 2

p

(
L

��
+ 1

p2
− 1

�2

)]
, vR � vI. (3.121)

Recall that p = √
2 m Ep and � = √

2 m (U − Ep). Since in the case of a thick barrier the
reflection probability is close to unity, we have vR ≈ −vI. Using equation (3.52), for the
centroid reflection time delay we find

t (cen)
R − tform,R ≈ 1

vI

〈
k

m
�

dδs(E )

dE

〉
k

≈ �
dδs(Ep)

dEp
+ 3γ 2

p

2m
�

d2δs(Ep)

dE2
p

+ γ 2
p p2

2 m2
�

d3δs(Ep)

dE3
p

= 2
�

vI �

(
1 + γ 2

p

�2 + 3 p2

2�4

)
. (3.122)

For the Gaussian wave packet the reflection packet formation time coincides with the incident
packet formation time tform,I � tform,R � (�√

2/π )/(γp vI).
An expression for the centroid transmission time delay is more cumbersome. Using

approximate relations (3.111) and the expansion

1

vT

〈
k

m
�

dδs(E )

dE

〉
k,T

= dδs(Ep)

dEp

[
1 + 2γ 2

p

(
δ′′s (p)
δ′s(p)

− 1

p

)
d

dp
log |T (p)| + γ 2

p

δ′′′s (p)

2δ′s(p)

]
, (3.123)

we finally find

t (cen)
T − tform,T � 2 �

vI �

[
1 + γ 2

p

(
L

�

(
L

�
+ �2 − p2

� p2

)
+ 2L (p2 − �2)

��3

+ 9 �2 p2 − 4�4 − p4

�4 p2

)]
. (3.124)

For the Gaussian wave packet the transmission quantum formation time becomes

tform,T � �
√

2√
πγp vI

[
1 − γ 2

p

2

(
L

��

(
1 − p2

�2

)
+ 3�4 − �2 p2 + 2 p4

�4 p2

)]
. (3.125)

Expansions in (3.124), (3.125) hold provided �

|z0| � γp � �/L. From these expressions we
may conclude that the centroid transmission and reflection time delays contain the formation
times tform,R(T), as the largest times in the limit of small γp, which arise because of the
averaging over the spatial packet distribution. The next-to-leading term (on the right-hand
side in equation (3.124)) not depending on γp coincides with tT given by equation (3.98). The
Hartmann effect discussed above is described by this quantum term. Corrections to the group
times (3.78), (3.79) that appeared due to the finite packet width, invoke dependence on the
length L of the region of non-zero potential. Dependence on L may indicate that the passage
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time of the barrier is proportional to its length. The concepts of the group times introduced in
the previous section can be reliably used if γp � �/L. Also, if these inequalities are fulfilled
and �

|z0| � γp, we can exploit asymptotic centroids. The quantity

δtγf = t (cen)
T − tform,I � 2�

vI�
− γp√

2πvI

L

��

(
1 − p2

�2

)
(3.126)

has a meaning of the forward delay time, compare with equation (2.68). The second (correction)
term in the second equality is positive for E > U/2 and negative for E < U/2.

More complete information about the temporal behavior of the packets can be extracted
from explicit forms of spatial distributions. To elucidate these aspects further, in the next
section we consider a specific example of the propagation of the Gaussian momentum packet.

3.8. Tunneling of the Gaussian wave packet

We now consider in detail the tunneling of the packet with the Gaussian envelop in the
momentum space, see equation (3.55). To be sure that we really operate in the tunneling
regime we have to keep γp � �, � > 0. Moreover we assume that γp � p. Thus, the
integration over k in equations (3.49), (3.76) and (3.77) can be extended to −∞. As in the
previous section we assume that �ξ ′(k) = z0 − k t0/m and we choose the initial position of
the packet z0 and time t0 such that 〈�ξ ′(k)〉k = 0.

The probability densities to find a particle in the point z at the moment of time t is given
by |�>(z, t)|2 = |�T(z, t)|2 for z � L/2 and by |�<(z, t)|2 = |�I(z, t)|2 + |�R(z, t)|2 +
2Re

(
�∗

I (z, t)�R(z, t)
)

for z � −L/2, where the wave functions are given by equations (3.49),
(3.76) and (3.77). The interference term in Re(�∗

I (z, t)�R(z, t)) is small, if z is sufficiently
far from the left border of the potential, |z + L/2| � �/γp. Then the first term in |�<(z, t)|2
describes the free motion of a wave packet with a Gaussian envelop and equals to

|�I(z, t)|2 =
√

2γ 2
p,I(t)

π�2
exp

(−2γ 2
p,I(t) (z − z̃I(t))

2/�2
)
, (3.127)

where the time evolution of the packet centrum and the width are determined by

z̃I(t) = vI t, γ 2
p,I(t) = γ 2

p /

(
1 + 4γ 4

p

(t − t0)2

m2�2

)
. (3.128)

The packet becomes smeared on the time-scale t − t0 � tsm = �m/γ 2
p . This corresponds

to z − z0 � vItsm. Further, to simplify expressions we will restrict ourselves to the times
t − t0 � tsm, and to the distances z − z0 � vItsm. For a particle moving not too far from the
barrier, the typical values of time and space coordinates are t − t0 ∼ |t0| and z − z0 ∼ |z0|.
Then assuming |z0| � �p/γ 2

p we can neglect the smearing of the wave packet and put further
γp,I � γp.

It is important to realize that for the packet described by equation (3.127), freely moving
through the spatial segment [−L/2,L/2], even for large L there is a small but finite probability
|�I(L/2,−L/(2vI))|2 = exp(−2γ 2

p L2/�2) to find the particle at z = L/2, while the center of
the packet is still at the point z = −L/2 and reaches the point z = L/2 only after the time L/vI.

For the transmitted wave keeping the second derivatives of the transmission amplitude we
find

|�T(z, t)|2 = |T (p)|2 γp,T

γp

√
2γ 2

p,T(t)

π�2
exp

(
−2γ 2

p,T(t)

[
(z − z̃T(t))

2 − γ 2
p,T

γ 2
p,T(t)

l2
T

]/
�

2

)
,

(3.129)
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where the motion of the packet’s centrum is described by equation

z̃T(t) = L + vT [t − (vI/vT) tT]. (3.130)

The speed of the transmitted packet vT given here by equation (3.111) is larger than the speed
of the incident packet.

The length lT in equation (3.129) is

lT = �
d

dp
log |T (p)|. (3.131)

The width is time dependent at the order γ 4
p ,

1

γ 2
p,T(t)

= 1

γ 2
p,T

+ 4 γ 2
p,T
(t − t0 − tγ ,T)2

m2�2
. (3.132)

Here γp,T is given by the equation (3.113) and the time is delayed by the quantity

tγ ,T = m �
d2

dp2
φT(p) = m �

d2

dp2
δs(p). (3.133)

The time-dependent term follows directly from the last two terms in the first equation in
(3.109), if we apply equation (3.108).

At the points z � z̃T(t) ± lT the exponent in equation (3.129) equals unity. For a broad
barrier the tunneling amplitude |T | can be presented as

T (p) = t(p) exp

(
−
∫ z2

z1

�(z,E ) dz/�

)
,

cf. the semiclassical expression equation (3.90), z1,2 are the classical turning points and t(p)
is a prefactor, which depends on p rather slowly. The value lT contains two terms

lT = vIt
(tun)
trav + δlT, t (tun)

trav =
∫ z2

z1

m dz

�(z,E )
, δlT = �t ′(p)/t(p). (3.134)

The quantity t tun
trav has the meaning of a traversal time between the turning points provided

� > 0, cf. equation (3.26). This is exactly the scale which is missing in the Hartmann effect.
The second term, δlT, in (3.134) is of the order of a quantum length scale, being much shorter
for the thick barrier than the first term.

For the rectangular barrier in the limit �L/� � 1 (see, equation (3.120)) we have
explicitly

lT = vIt
(tun)
trav + �

p

�2 − p2

�2
. (3.135)

Here t (tun)
trav = mL/�. Using equations (3.113), (3.131) and (3.135) we find how the packet

width changes after tunneling through the broad rectangular barrier

1

γ 2
p,T

≈ 1

γ 2
p

+ 2

�

dlT
dp

≈ 1

γ 2
p

+ 2

(
L

��
+ 1

p2

)(
1 + p2

�2

)
. (3.136)

Thus, the longer is the barrier, the broader becomes the transmitted wave packet forming for
z � L/2. Further we continue to assume that |z0| � �p/γ 2

p and we assume that L � ��/γ 2
p .

For the reflected wave packet equations (3.129)–(3.132) can be applied after the formal
replacement of indices ‘T’→‘R’ and the scattering amplitude T(p) → R(p); the reflected-
packet centrum moves according to z̃R(t) = −L − |vR| [t − (vI/|vR|) tR

]
, where we take into

account that vR < 0. For the broad barrier we can put |vR| � vI and |R| � 1, so that γp,R = γp

and lR = 0, and we write

|�R(z, t)|2 =
√

2γ 2
p

π�2
exp

(−2γ 2
p (z − z̃R(t))

2/�2
)
, z̃R(t) = −L − vI (t − tR). (3.137)
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The peak of the reflected wave packet is formed at z = −L/2 at the time moment t(−L/2) =
−L/2vI + tR, tR = tT, i.e. with a delay tT compared to the time moment when the incident
packet reached z = −L/2. For the thick rectangular barrier t(−L/2) = −L/2vI + 2�/�vT.

Comparing equations (3.127) and (3.129) we observe that the tail of the transmitted wave
packet begins to be formed for z � L/2, already at a time when the maximum of the incident
wave packet has not yet reached the point z = −L/2. For example, if the incident packet is at
some coordinate z′ < −L/2 at the time z′/vI, the relative probability of the transmitted packet
to be at z = +L/2 is equal to

|�T(L/2, z′/vI)|2
|�I(z′, z′/vI)|2 ≈ |T (p)|2 γ

2
p,T

γ 2
p

exp
(
2 γ 2

p,Tl2
T/�

2
)

exp

(
−2
γ 2

p,T

�2

[
1

2
L + vT

vI
z′ − vItT

]2)
.

(3.138)

However, the maximum of the transmitted packet does not emerge from under the barrier
even at the moment when the incident packet’s maximum is at the left border of the potential.
Indeed, from equation (3.130) we see that it happens when t(L/2) = −(L/2−vItT)/vT. At free
propagation at this moment the incident packet would be at z = −(L/2 − vItT) vI/vT > −L/2
since vI < vT. For the thick rectangular barrier t(L/2) = −L/2vT + 2�/�vT. For Lγp � �

the formation of the transmitted wave packet peak at z = L/2 is delayed compared to the
moment when the incident one arrives at z = −L/2, by the quantum time �t � 2�/�vI and
the transmitted peak at z = L/2 is formed approximately at the same time (at negligible γp)
as the reflected wave packet peak at z = −L/2 (the Hartmann effect). However for Lγp � �

the same difference of times is approximately �t � L2γ 2
p /��vI, i.e. it depends on L.

The finite width of a packet describing a moving particle alters the notion of the
particle being at some spatial point. The probability to find a particle at a given point
becomes essentially non-zero already before the center of the packet has reached it, with an
advancement

tγdec = �

vI γp
= �

γ
, (3.139)

where γp and γ are the momentum and energy dispersions in the Gaussian packet given
by equations (3.50) and (3.46), respectively. This is in accord with the uncertainty principle
derived by Mandelstam and Tamm in [58],

�E�T � �

2
|Ṫ |, �E = ((E − Ē )2

)1/2
, �T = ((T − T̄ )2

)1/2
, (3.140)

where T is a physical quantity not dependent on time explicitly; the bar means quantum–
mechanical averaging. The value δtvar = |�T /Ṫ | is the variation time during which the
observableT changes its value more than its dispersion. Taking the coordinate as the observable
T and �T as the average spatial width, we can interpret δtvar as the minimal time the packet
needs to pass a certain space point. Since �E ∼ γ is the energy width for the Gaussian wave
packet under consideration, the minimal duration of the emergence of the transmitted wave
packet on the right side of the barrier is δtvar ∼ �/γ = tγdec. At the same time the incident
packet needs to enter the barrier on the left side. Since the information may reach the given
point with an advancement ∼δtvar the real (forward) delay/advance time for the particles of
the transmitted packet is not tT = tbs but should be counted from 2 tγdec:

δt (tun)
f ≡ tbs − 2 tγdec. (3.141)

Now consider propagation of the wave packet inside a rectangular barrier. The internal
wave function (3.4) with the coefficients (3.20) contains the growing and evanescent parts
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ψU (z,E ) = ψgrow + ψevan = D+(k) e� z/� + D−(k) e−� z/�,

D±(k) = 1

2
(C+ ± C−) = 1

2
(1 ± ik/�)T (k) e(ik∓�)L/2�

= 1

2

√
1 + k2

�2
T (k) e±iβ� (k)+(ik∓�)L/2�, β� (k) = arctan(k/�).

(3.142)

Hence the internal wave packet

�U (z, t) =
∫ ∞

0

dk

2π�
ϕ(k) ψU (z,E ) e−iEt/� (3.143)

can be written as the sum of growing and evanescent parts and their interference

|�U (z, t)|2 = |�grow(z, t)|2 + |�evan(z, t)|2 + 2 Re{�grow(z, t)�
∗
evan(z, t)}. (3.144)

The first two terms do not contribute to the current density. The current conservation for the
particle motion under the barrier is due to the presence of the interference term.

Introducing the phase of the amplitudes for the growing and evanescent parts of the wave
function

φD,±(k) = arg D±(k) = φT(k)+ kL

2�
± β�(k) (3.145)

we can cast the growing part, |�grow(z, t)|2 ≡ |�+(z, t)|2, and the evanescent part,
|�evan(z, t)|2 ≡ |�−(z, t)|2, in the form

|�±(z, t)|2 = 1

4

(
1 + p2

�2

)
|T (p)|2 e±2� (z−L/2)/�

γ
(±)
p,D

γp

√
2γ (±)2p,D (t)

π�2

× exp

[
2
γ
(±)2
p,D

�2

(
l(±)D ∓ z

p

�

)2]
exp

[
−2
γ
(±)2
p,D (t)

�2

(
vI (t − t (±)D )

+ 2γ (±)2p,D

t − t (±)γ ,D

m �

(
l(±)D ∓ z

p

�

))2]
. (3.146)

The spatial widths of the internal packets are given by
1

γ
(±)2
p,D

= 1

γ 2
p

− 2

[
d2

dp2
log |D±(p)| − z

��

(
1 + p2

�2

)]
= 1

γ 2
p,T

− 2

�2

(
1 + 2

p2

�2

)
− 2

z ± L/2

��

(
1 + p2

�2

)
, (3.147)

thus acquiring a weak time dependence

1

γ
(±)2
p,D (t)

= 1

γ
(±)2
p,D

+ 4γ (±)2p,D

(t − t0 − t (±)γ ,D)
2

m2 �2
, t (±)γ ,D = m�

d2φD,±(p)
dp2

= m�
d2δs(p)

dp2
± m�p

�3
, (3.148)

operating on the large time-scales for t − t0 � tsm, where the smearing time tsm is given
by equation (3.57). On the shorter time-scales and for γ 2

p L/�� � 1 we can approximate
γ
(±)
p,D (t) ≈ γp,T. Then equation (3.146) simplifies as follows

|�±(z, t)|2 ≈ 1

4

(
1 + p2

�2

)
|T (p)|2e±2� (z−L/2)/�

√√√√ 2γ 4
p,T

π�2γ 2
p

× exp

(
2
γ 2

p,T

�2

[(
l(±)D ∓ z p/�

)2 − v2
I

(
t − t (±)D

)2])
. (3.149)
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We see that in this approximation the time dependence decouples completely from the spatial
dependence. As time elapses starting from negative values the profile of the probability density
increases as a whole, reaches the maximum at t = t (±)D and then decreases for t > t (±)D on
the time-scale tγdec, see equation (3.139). Hence the probability to find a particle inside the
barrier decreases with the passage of time on a typical time-scale tγdec. The increase follows the
approach of the incident packet with the time delay t (±)D = �

dφD,±(Ep)

dEp
. Using the definitions of

the phases φD,± and φT from equations (3.145) and (3.9) and β� from equation (3.142) we can
write the time delay through the transmitted group time (3.82) as

t (±)D = �
dφT(Ep)

dEp
+ L

2 vI
± �

vI�
= tT − L

2 vI
± �

vI�
. (3.150)

We see that for the thick barriers, �L/� � 1, we deal with the time advance t (±)D � −L/2vI.
For the thick rectangular barrier t (+)D � −L/2vI + 3�/vI�, t (−)D � −L/2vI + �/vI�. Thus
the probability maxima of the evanescent and growing waves are delayed with respect to the
moment when the peak of the incident wave has reached the point z = −L/2 by the time steps
�/vI� and 3�/vI�, respectively.

As follows from equation (3.149), because of the finite width of the momentum
distribution, the probability density is modulated by the factor exp

(
2γ 2

p

(
l(±)D ∓ z p/�

)2
/�2
)

with the characteristic length

l(±)D = �
d

dp
log |D±(p)| = lT + p

�

(
�

�
∓ L

2

)
. (3.151)

For the growing wave this factor is maximal at z = −L/2, and for the evanescent wave, at
z = +L/2. For the broad barrier the characteristic length is equal to

l(±)D = (1 ∓ 1
2

)
vI t (tun)

trav + �

p
. (3.152)

Thus, the length of the barrier enters the internal wave through the time delay tD,± and the
length l(±)D .

For completeness we give also the expression for the last interference term in
equation (3.144) in the limit γ 2

p L/�� � 1:

Re{�grow(z, t)�
∗
evan(z, t)} ≈ Re{D+(p)D∗

−(p)}
√

2 γ 2
p

π �2
exp

(
2
γ 2

p

�2

[
1

4

(
l(+)D + l(−)D

)2
− v2

I

(
t − 1

2

(
t (+)D + t (−)D

))2

+ p2

�2
(z + L/2)2 − �

2

4�2

])
. (3.153)

From equations (3.129) and (3.149) we see that the probabilities of finding a particle
inside the barrier (−L/2 � z � L/2) and being tunneled through it (at L/2 < z) are enhanced
compared to the case of the monochromatic wave with E = Ep. To quantify these enhancements
we introduce the following factors for the transmitted, growing and evanescent wave packets

CT(z, t) = |�T(z, t)|2
|T (p)|2 |�I (̃zI(t), t)|2 = γ 2

p,T

γ 2
p

exp

(
2
γ 2

p,T

�2

[
l2
T − (z − z̃T(t))

2
])
, (3.154)

Cgrow(z, t) = e−2�z/�|�+(z, t)|2
|D+(p)|2 |�I (̃zI(t), t)|2

= γ 2
p,T

γ 2
p

exp

(
2
γ 2

p,T

�2

[(
l(+)D − z

p

�

)2

− v2
I

(
t − t (+)D

)2])
, (3.155)
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Cevan(z, t) = e+2�z/�|�−(z, t)|2
|D−(p)|2 |�I (̃zI(t), t)|2

= γ 2
p,T

γ 2
p

exp

(
2
γ 2

p,T

�2

[(
l(−)D + z

p

�

)2

− v2
I

(
t − t (−)D

)2])
. (3.156)

These enhancements occur owing to the fact that for the waves with E > Ep entering the
packet the probability of penetration of the barrier is larger than for the single wave with
E = Ep. Thus, analyzing the temporal aspects of the tunneling problem, we have to make a
benchmark on the tunneling probability for the monochromatic wave. As follows from (3.154),
the probability to meet the particle at z = L/2 becomes the same, as it were in case of the
monochromatic wave with E = Ep, for the first time on the right wing of the Gaussian at the
time moment

t (r.w.)mon = − lT
vT

− L

2 vT
+ vI

vT
tT, (3.157)

when the maximum of the incident wave packet is yet at z = z̃I(t (r.w.)mon ) = vIt (r.w.)mon < −L/2
and the maximum of the transmitted wave packet did not yet appear at z = L/2. Recall, the
traversal time t (tun)

trav = m L/� is determined, as in (3.134). At the later time, the probability
again becomes the same on the left wing of the Gaussian at the time

t (l.w.)mon = + lT
vT

− L

2 vT
+ vI

vT
tT, (3.158)

when the maximum of the transmitted wave packet achieves the point z = z̃T(t (l.w.)mon ) = L/2+lT.
Thus 1

2 (t
(l.w.)
mon − t (r.w.)mon ) = lT

vT
.

For the thick barrier:

t (r.w.)mon = vI

vT

[
− t (tun)

trav − L

2vI
− m�

p2
+ m�

�2
+ 2m�

p�

]
,

t (l.w.)mon = vI

vT

[
t (tun)
trav − L

2vI
+ m�

p2
− m�

�2
+ 2m�

p�

]
, (3.159)

z = z̃T(t (l.w.)mon ) = L/2 + vIt
(tun)
trav + �(�2 − p2)/(p�2).

Note that working within the assumptions |z0| � �p/γ 2
p and L � ��/γ 2

p we can use
γp,T(t) � γp,D(t) � γp and vT � vI up to 1 + O(γ 2

p ) corrections. Finally for a thick barrier

1

2

(
t (r.w.)mon − t (l.w.)mon

) � t (tun)
trav � t (l.w.)mon − t

(̃
zI = −L

2

)
� t (l.w.)mon − t

(̃
zT = L

2

)
. (3.160)

Up to small correction terms, this is the difference in the time, when the wave with E � Ep

has passed the barrier and the time, when the incident packet peak has reached it. On the other
hand it can be treated as the difference in the time, when the wave with E � Ep has passed the
barrier and the time, when the transmitted packet peak has been formed at the same point (on
its right border).

The above analysis allows us to reconsider the definition of the transmission time through
the broad barrier. If we are interested in the time the waves with E � Ep travel through the
barrier, we have to wait until at least the time ∼t (l.w.)mon after the maximum of the transmitted
packet appears to the right of the barrier. Before this, mainly the modes with energies E > Ep

pass through the barrier. Thus we are able to associate the time t (tun)
trav with the time of penetration

of the thick barrier by the peak of the wave packet. The time t (tun)
trav ∝ L naturally appears as

the time of propagation of approximately monochromatic waves through a thick barrier. This
can be considered as a resolution of the Hartmann paradox.

Summarizing, the physical picture of the tunneling of the wave packet sharply peaked
in the momentum space at E = Ep < maxU incident on the very thick barrier (from large
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distances to the left of the barrier) is as follows. The probability to observe the particles which
have passed the barrier reaches the same value as it is in the stationary problem for E = Ep

at the moment when the peak of the incident wave packet has not yet reached the barrier.
The peak of the transmitted wave packet is formed at the right border of the barrier, after a
quantum time delay (not dependent on the barrier depth) from the moment, when the peak of
the incident wave packet reaches the left border of the barrier (the Hartmann effect). Then the
peak of the transmitted wave packet propagates to the right away from the barrier. The peak
of the reflected wave packet is formed at the left border of the barrier with approximately the
same time delay. Then it propagates back to the left of the barrier. The evanescent and growing
waves inside the barrier have no peaks. They increase with time until the moment when the
incident wave packet reaches the left edge of the barrier with two different delays both of
the quantum time order and then decrease. The modes with higher energies pass through the
barrier more rapidly than the less energetic modes. The modes with E � Ep pass the barrier
during the time t (tun)

trav ∝ L, which resolves the Hartmann paradox.

3.9. Resonance states and their time evolution

We turn now to the question of the temporal evolution of a quantum system, which exhibits a
resonance behavior. Consider an example of the particle motion restricted to a right half-space
(z > 0) with a rectangular barrier of the height U between z = lR and z = l.

U (z) =

⎧⎪⎪⎨⎪⎪⎩
∞, z � 0
0, 0 < z < lR
U, lR � z � l
0, l < z.

(3.161)

We start this section assuming that E < U , so that classical motion is possible for 0 < z < lR
and z > l, and for lR < z < l we deal with the tunneling. Applying the results of section 3.1
we may use the wave function (3.2) for z � 0 and identify l = L/2. The internal wave function
(equation (3.14)) contains only the anti-symmetric part

ψU (z,E ) = C̃−(E ) χ−(z,E ),

χ−(z,E ) =
{

sin(k z/�), 0 � z < lR

sin(k lR/�) cosh
(
�(z − lR)/�

)
+ k

�
cos(k lR/�) sinh

(
�(z − lR)/�

)
, lR � z � l,

(3.162)

where, as before, k = √
2mE and � = √

2m(U − E ). The logarithmic derivative is equal to

d−(E ) = l
d

dz
logχ−(z,E )

∣∣∣∣
z=l

= l�

�

k + � tan(k lR/�) tanh(�(l − lR)/�)

k tanh(�(l − lR)/�)+ � tan(k lR/�)

= l�

�

ζ (E, lR)+ p(E )

ζ (E, lR)− p(E )
, (3.163)

where we denoted

ζ (E, lR) = k cot(k lR/�)+ �
k cot(k lR/�)− � , p(E ) = e−2�(l−lR )/�. (3.164)

Note that for lR = 0 we recover from equation (3.163) the result of equation (3.17) for d−.
Working within a half-space we have to put d+ ≡ d−, then from equations (3.7) and (3.8) we
find the reflection amplitude

R(E ) = eiπ−i2 kl/� d−(E )+ i k l/�

d−(E )− i k l/�
= eiφR(E ), φR(E ) = π − 2kl/� + δs(E ), (3.165)
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with the scattering phase δs given by the relation

eiδs(E ) = � + i k

� − i k

ζ (E, lR)+ �−i k
�+i k p(E )

ζ (E, lR)+ �+i k
�−i k p(E )

. (3.166)

The coefficient C̃−(E ) of the internal wave function defined in equations (3.12) and (3.14) can
be expressed with the help of equation (3.163) and the relation

χ−(l,E ) = sin(klR/�)√
p(E )

ζ (E, lR)− p(E )

ζ (E, lR)− 1
following from equation (3.162) as

C̃−(E ) = 2 i
√

p(E )

sin(k lR/�)

k e−ikl/�

� − ik

1 − ζ (E, lR)
ζ (E, lR)+ �+i k

�−i k p(E )

= 2 i

√
p

k2 (ζ − 1)2 + �2 (ζ + 1)2

k2 (ζ − p)2 + �2 (ζ + p)2
eiπ−ikl/�+iδs(E )/2. (3.167)

In the last equation we used explicitly that E < U and � is real, and we suppressed
the arguments of functions ζ and p for shortness. We also used that 1/ sin2(k lR) =
1 + (�2/k2)(ζ + 1)2/(ζ − 1)2.

If U > U (n) = π �
2(2 n + 1)/(4 m l2

R), equation ζ (E, lR) = 0 has n solutions,
{εi}, i = 1, . . . , n, which constitute the spectrum of bound states for the rectangular
potential well (3.161), provided we put l → ∞. For energies close to εi we can expand
ζ (E, lR) ≈ rζ ,i(E − εi)/4 εi, where rζ ,i = (lR �i/� + 1)(k2

i /�
2
i + 1), ki = √

2mεi and
�i = √

2m(U − εi). Hence, the amplitude R(E ) possesses simple poles at energies Ei.
Consider the case of a broad barrier. Then p(εi)� 1 and the poles are close to εi,

Ei = εi − 4 εi

rζ ,i

�i + i ki

�i − i ki
p(εi) = ER,i − i

2
�i, (3.168)

with the real, ER,i and imaginary, −�i/2, parts, given by

ER,i = εi − 4 εi

rζ ,i

�2
i − k2

i

�2
i + k2

i

p(εi), �i = 16 �2
i k2

i(
�2

i + k2
i

)2 p(εi)
�iki

2m(lR�i/� + 1)
. (3.169)

The expression for the width �i has a simple semiclassical interpretation: �i =
� |T (ER,i)|2/P(ER,i), where in the limit �(l − lR)/� � 1, which we now consider, |T |2
is the transmission coefficient of the barrier (cf. equation (3.19)), and P = 2(m/k)(lR + �/�)

is the period of the particle motion within the potential well (0 < z < lR). The latter expression
takes into account that the particle can enter a depth �/� under the barrier. In other words
the width is given by the product of the number of hits of the particle off the barrier per unit
of time and the probability of barrier penetration after each collision. This result survives for
an arbitrary barrier within applicability of the semiclassical approximation [7]. Close to the
resonance, E ∼ ER,i, the amplitude can be written as

R(E ) ≈ eiπ−2i kil/�+2iβ� (εi)
E − ER,i − i

2�i

E − ER,i + i
2�i

≈ eiπ−2 i kil/�+2iβ� (E )+2 i δi(E ). (3.170)

We see that the phase shift can be approximately presented as δs(E ) ≈ 2β�(E ) + 2δi(E ),
where the resonance scattering phase is given by

δi(E ) = arctan

(
�i/2

ER,i − E

)
, (3.171)

and the non-resonant (potential) phase β� is defined by equation (3.142). Note that the values
ER,i/� and �i/� here have the same meaning as the values ωR and �, which we used in
section 2; cf. poles of the Green’s functions (2.30) and equation (3.168).
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For the case �i � |ER,i+1 − ER,i|, which we will further consider, we can write

R(E ) ≈
n∑

i=1

e−2 ikil/�+iβ� (E )
i�i

E − ER,i + i
2�i
. (3.172)

Consider now the temporal aspects of this scattering problem. Defining the dwell time
in the same way as in section 3.2, after some manipulations we obtain, with the help of
equations (3.162) and (3.167),

td(0, l,E ) = 1

v

∫ l

0
|ψU (z,E )|2 dz = m

k
p

k2 + �2

k2 [ζ − p]2 + �2 [ζ + p]2

(
2 lR(ζ + 1)2 − 8lRζk2

k2 + �2

+ 2�

�

[
(1 − ζ 2)+ k2

k2 + �2
(2ζ log p + ζ 2/p − p)

])
. (3.173)

The value td(0, l,E ) is the time needed by the incident current jI = v = k/m to fill the
internal region [0, l] with the probability density |ψU (z,E )|2. The quantity (3.173) is plotted in
figure 13 as a function of the energy for different barrier penetrabilities parameterized through
the value p(E ) = exp(

√
1 − E/U log p(0)) at the zero energy. For a tiny barrier penetrability

the internal wave function has a small amplitude for most energies ∝ |C̃−| ∝ p � 1 and
therefore the dwell time is very short. Only for the energies close to the resonance ζ ∼ p the
internal wave function can acquire a large amplitude |C̃−| ∝ 1/p and the dwell time becomes
very large. Exactly at the resonance energy, E = ER,i, we find that

td(0, l,ER,i) ≈ 4�

�i
, (3.174)

where we used that ζ (ER,i) = −p(�2
i − k2

i )/(�
2
i + k2

i ) as follows from equation (3.169). By
varying the length of the resonator lR one can change the number of resonances in the potential,
see the different panels in figure 13 plotted for different values of lR.

Describing the scattering problem in terms of the wave packet (3.41) just collected with
the wave function (3.2) with T = 0, R given by equation (3.165) and the internal function
(3.162), we can define the reflection group time in the same way as in section 3.4: this is the
time interval between the moment when the maximum of the incident wave packet moving
toward the origin is at the position z = l, and the moment when the maximum of the reflected
packet moving away from the potential region is at the same position z = l. Applying this
definition to a wave-packet with the energy distribution �(E ) sharply peaked at the averaged
energy E with a small energy spread γ , γ � �i, we find

tR(E ) = 2
l

ṽ
+ �

dφR(E )

dE
= �

dδs(E )

dE
, (3.175)

where E ≡ mṽ2/2. The physical meaning of the quantity tR is the following: if we send a wave
packet with the well-defined energy E and observe the reflected packet at a fixed distance z
from the scattering center, z � l, then tR(E) is the time delay in the arrival of the emitted
wave packet with respect to the case without a barrier. For energies close to the resonant ones
E ∼ ER,i and �i � |ER,i+1 − ER,i| the reflection group time can be written as

tR(E ) ≈ −2
lR
ṽ

+
∑

i

2�
dδi(E )

dE
= −2

lR
ṽ

+
∑

i

��i

(E − ER,i)2 + 1
4�

2
i

. (3.176)

We use that for E close to ER,i � εi we have β�(E ) � arctan(ki/�i) = −kilR/� � −̃klR/�
with k̃ =

√
2mE. We see that, if E = ER,i, then the resonance time delay is as large as

tR(ER,i) ≈ 4�

�i
. (3.177)
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Figure 12. Sketch for the problem of the 1D-scattering on a potential given by equation (3.161) with
the incident wave coming from the right. The internal wave function is given by equation (3.162).

Hence, the incident wave packet lingers in the interaction region much longer than if it crossed
this distance with the mean velocity. If the particle energy is de-tuned from any resonance
|E − ER,i| � �i, then tR changes the sign and we deal with the time advancement

tR ≈ −2
lR
ṽ
, (3.178)

as for classical scattering on a hard sphere, cf. equation (2.81). As we see, the internal part
of the potential 0 < z < lR is effectively excluded from the particle motion. Interestingly, in
equation (3.178) there is no contribution from the under-barrier region [lR, l]. It seems like
the packet instantly passes under the barrier but does not enter the resonator [0, lR]. This is a
manifestation of the Hartmann phenomenon discussed in section 3.6. In this connection we
have to emphasize that the group time tR is not a proper measure of the time the tunneling
particle spends under the barrier.

The dwell time (3.173) and the reflection group time (3.175) are connected by the relation
similar to equation (3.83) following from equation (B.4):

td(0, l,E ) = tR(E )− δti(E), (3.179)

where the interference time delay is given by

δti(E ) = − �

k̃̃v
sin
(
2 k l + φR(E)

) = �

2E
sin δs(E ). (3.180)

Close to the resonance energy the interference time is not singular, vanishing at E = ER,i, and
is much smaller than the reflection group time tR and the dwell time td.

Since, as depicted in figure 12, there is obvious symmetry in the motion of a particle
toward the origin and away from it, it is convenient to define a measure of time for a reflected
wave only. Then we define the scattering group time,

ts(E ) = 1
2 tR(E), (3.181)

as a half of the bidirectional scattering time defined in equation (3.80), ts = tbs/2. The time ts
corresponds to the group time defined for the classical motion in equation (2.11). The similar
time-quantity is introduced in equation (2.82) for classical particles undergoing the scattering
on a hard sphere. In view of the relation (3.179) it is convenient to also introduce the single-way
dwell time

ts.w.
d (0, l,E ) = 1

2 td(0, l,E ), (3.182)
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Figure 13. The dwell time (3.173) for the potential (3.161) as a function of the energy for
various values of the coefficient p(0), see equation (3.164), shown by the line labels. Three panels
demonstrate results for various values of lR measured in units l0 = �/

√
2mU . The solid lines in

all panels are multiplied by a factor 1/5.

so that close to the resonance energy for a narrow resonance we have

ts(E ) ≈ ts.w.
d (0, l,E ) ≈

n∑
i=1

�
dδi(E )

dE
=

n∑
i=1

��i/2

(E − ER,i)2 + 1
4�

2
i

≡
n∑

i=1

�

2
Ai(E ). (3.183)

Each of the functions Ai(E ) satisfies the sum-rule∫ ∞

−∞
Ai(E )

dE

2π
= 1, (3.184)

cf. equations (2.65)–(2.67) in classical mechanics. Here the integral sits near each ith pole and
thereby we are able to perform integration from −∞ to ∞ or from 0 to ∞. Correspondingly,
the integral over the energy of the scattering group time or the single-way dwell time yield the
number of resonances in the system∫ ∞

0
ts(E )

dE

π�
≈
∫ ∞

0
ts.w.
d (0, l,E )

dE

π�
≈ n. (3.185)

Thus the dwell time defined in equation (3.173) can be related to the number of states per unit
energy

td(0, l,E ) = 2ts.w.
d (0, l,E ) ≈ 2π�

dn

dE
; (3.186)

cf. the semiclassical relation (3.30).
We now turn to a more detailed study of the wave function of the scattering problem

with the potential (3.161). For the sake of further applications let us now re-organize the wave
functions of the stationary problem shown in figure 12 to deal with the incident and reflected
currents equal to unity outside the barrier. For this we multiply the wave function (3.2) with R
given by equation (3.165) and the internal wave function (3.162) with the coefficient (3.167)
by the factor i

√
1/v eik l/�−iδs(E )/2 and obtain

ψ(z; E ) =
⎧⎨⎩

i√
v

eik l/�−iδs(E )/2C̃−(E )χ−(z,E ), z � l√
4
v

sin(k (z − l)/� + δs(E )/2), z > l.
(3.187)

Expressions for C̃−(E ) and δs(E ) were derived above for E < U . For E > U the coefficient
C̃−(E ) is given by the first line in equation (3.167) and the phase δs(E ) is defined in
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equation (3.166) after the replacement � → i|�|, there and in equation (3.164). The wave
functions (3.187) are normalized as∫ ∞

0
ψ∗(z,E ) ψ(z,E ′) dz = 2π� δ(E − E ′). (3.188)

For our further study of the time evolution of a quantum system such a normalization is more
convenient than that given by equation (3.42).

If we deal with a system with narrow and isolated resonances, i.e. we assume that the
potential barrier is broad, p � 1, and the resonator length lR is such that |ER,i+1 − ER,i| �
�i + �i+1, the internal wave function acquires for E < U a sizable magnitude only if the
energy E is close to the resonance one. In the vicinity of the ith resonance E ∼ ER,i, we may

put sin(kilR/�) = ki/

√
�2

i + k2
i in equation (3.167) and it takes the form

C̃−(E ) ≈ 2 i
4�2

i εi e−�(l−lR )/�(
k2

i + �2
i

)
(lR�i/� + 1)

e−i ki l/�+iβ� (E )

E − ER,i + i
2�i

≈ − i

√
2 v

lR
e−i k l/�+iβ� (E )+iδi(E )

√
��i

(E − ER,i)2 + �2
i /4
. (3.189)

Taking this into account the internal part of the wave function can be written for E < U as
follows

ψ(z � l; E < U ) ≈
n∑

i=1

√
��i

(E − ER,i)2 + �2
i /4

√
2

lR
χ−(z,E ), z � l, (3.190)

where each element of the sum contributes only for |E−ER,i| � |ER,i+1−ER,i|. This expression
shows that only particles with energies within the interval ER,i − �/2 < E < ER,i + �/2
penetrate inwards through the barrier and form the internal wave function.

The wave function in equation (3.190) allows for an important generalization. The
coordinate part of the internal wave function can be replaced by the stationary wave function
of the closed quantum system, which is obtained from those shown in figure 12 by extending
the barrier to infinity, l → ∞. Herewith the n resonance states at energies ER,i (with the widths
�i) turn into n bound states with energies εi with the wave functions

ψ
(bound)
i (z) = Ciχ−(z, εi). (3.191)

Since the barrier was initially broad, �i being small, and the difference between the energy
of the bound state and the energy of the resonance is small, |εi − ER,i| = O(p(ER,i)).
Similarly the normalization coefficients Ci differ from

√
2/lR by a small factor O(p(ER,i)).

Then ψ(z; E < U ) in (3.190) is factorized as

ψ(z; E < U ) ≈
n∑

i=1

√
Ai(E )ψ

(bound)
i (z).

Such a factorization of the internal wave function of a scattering problem into a wave function
of the corresponding bound state problem and an enhancement factor

√
Ai(E ) is argued in

[80, 106–108] to be possible for any finite-range potential and with some modifications also
for the Coulomb potential. These results have found applications in the studies of nucleon-halo
nuclei [109] and di-proton radioactivity [106, 110].

With the help of the wave functions (3.190) we can give a new interpretation for the dwell
time ts.w.

d (0, l,E ). It can be presented as the ratio of the density of states in the region of the
potential to the density of the free states in the same region (i.e. the relative probability for the
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particle to be inside the region of the potential compared to the scattering in the absence of the
potential) multiplied by the time of the free motion inside the potential region l/v:

ts.w.
d (0, l,E ) = �

l

v

∫ l
0 |ψ(z; E )|2 dz∫ l

0 |ψ(free)(z; E )|2 dz
, ψ(free)(z; E ) =

√
4

v
sin(k z/�). (3.192)

This is in accord with the ergodicity principle, see below, section 4.4.1.
Now consider the problem of the decay of quasi-stationary states. The problem can be

formulated as follows. Assume that one sends a stationary particle flux of the energy E1 on
the potential shown in figure 12, and we ask the question how long particles from the beam
will be delayed inside the region of the potential (0 < z < lR) in dependence of the value
E1 of beam energy after the beam is suddenly switched off. Particles from the beams having
real energies E1 within bands, ER,i ± α�i, α ∼ 1, form wave packets, corresponding to initial
(after the switching off of the beam) quasi-stationary states, which remain inside the potential
well for a long time (if the barrier is broad), until the particles, described by these states,
penetrate through the barrier to infinity. The particles with initial beam energies far from
energies ER,i ± α�i enter the region of the potential well only with a tiny probability. So, we
may ask the question how long a particle corresponding to the initial real energy E1 from the
band ER,i ± α�i (or better, particles corresponding to an energy distribution within the band
provided the beam had a finite energy dispersion) stays in the resonance quasi-stationary state
till its decay? (The question of how long it takes for the particle to pass the barrier has been
considered above.) One can prepare, of course, a more complicated quasi-stationary state by
populating not one but several resonant states using the incident wave packet with a broader
energy distribution.

A similar initial state can be prepared differently. The initial localized state can be created
right inside the potential well (for 0 < z < lR), e.g. by reactions. If the barrier is broad, at times
much shorter than the decay times of the resulting quasi-stationary states the produced particles
with E < maxU are redistributed over the energy levels corresponding to the stationary levels
related to the same problem but without a penetrable barrier. On a longer time-scale each of
these levels is actually a quasi-stationary level and our problem is to find the decay time.

Considering a general case, we assume that at the time t = 0 our system is described
by an arbitrary wave function �(z, 0) localized inside the potential region, i.e. we assume
�(z, 0) = 0 for z > lR. The evolution of this state is determined by the unitary operator
exp(−i Ĥt), so that at any later time t > 0 the wave function of the system is equal
to �(z, t) = exp(−i Ĥt)�(z, 0). Expanding the initial wave function in terms of the
eigenfunctions of the Hamiltonian Ĥ, ψ(z; E ) for E > 0, normalized as in equation (3.188)
we can write

�(z, t) =
∫ ∞

0

dE

2π�
�(E ) ψ(z; E ) e−iEt/�, (3.193)

where

�(E ) =
∫ ∞

0
dzψ∗(z; E )�(z, 0) =

∫ l

0
dzψ∗(z; E )�(z, 0). (3.194)

The unitary evolution conserves the normalization of the wave function and since the initial
wave function is normalized to unity, then∫ ∞

0
dz|�(z, t)|2 =

∫ l

0
dz|�(z, 0)|2 =

∫ ∞

0

dE

2π�
|�(E )|2 = 1 (3.195)

for any moment of time t. Note the difference in normalization of the function �(E ) in
comparison with equation (3.43).
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The overlap between the wave function at time t and the initial wave function gives the
amplitude of the survival probability (also called integrity)

G(t) =
∫ ∞

0
�∗(z, 0)�(z, t) dz =

∫ ∞

0

dE

2π�
|�(E )|2e−iEt/�, (3.196)

so that Psurv(t) = |G(t)|2 is the probability that the system remains in the same state after a
passage of time t. Obviously at t = 0 probability Psurv is equal to unity, G(0) = 1 in view
of equation (3.195). At any later time it becomes smaller than unity, as follows from the
Cauchy–Schwarz–Bunyakovsky inequality:

|G(t)| =
∣∣∣∣ ∫ ∞

0
�∗(z, 0)�(z, t) dz

∣∣∣∣ � ∣∣∣∣ ∫ ∞

0
|�(z, 0)|2 dz

∣∣∣∣1/2∣∣∣∣ ∫ ∞

0
|�(z, t)|2 dz

∣∣∣∣1/2 = 1.

(3.197)

Since the function |�(E )|2 is integrable on the ray [0,+∞), see equation (3.195), one can
prove [111] that limt→∞ G(t) = 0. This means that an initial state will always decay at large
times. Under the assumption of a purely exponential decay one identifies the life-time of the
system in the initial state, or its decay time, as tdec = −Psurv(t)/Ṗsurv(t), which in this case
would be a time-independent quantity. However Khalfin in [112] pointed out that Psurv(t)
cannot be purely exponential. It deviates from the exponent both for very large times and for
very short times. This conclusion is obtained without any assumptions about the quantum state
and the system dynamics. For a more extensive discussion of this issue we address the reader
to the review [66]. Possible manifestations of a non-exponential decay in nuclear systems are
discussed, e.g., in [113]. Peculiarities of a many-body quantum decay are studied in [114],
where the important role of the effects of the quantum statistics is demonstrated.

Since, as argued above, the purely exponential decay is not possible for all times, it
would be desirable to find such a definition of the decay time, which does not depend on
the assumption of a particular form of the survival probability amplitude. Following Fleming
[115] let us define the decay time of the unstable state as

tdec =
∫ ∞

0
dt|G(t)|2 = 1

2

∫ ∞

0

dE

2π�
|�(E )|4, (3.198)

where we have used equation (3.196). The integral exists, if |G(t)|2 � 1/t1+δ for large t and
δ > 0. The sojourn time

tsoj(0, l) =
∫ ∞

0
dt
∫ l

0
dz|�(z, t)|2 (3.199)

is a characteristic of how long the particle stays within interval [0, l] starting from initial
moment t = 0, see equation (3.92). By analogy to equation (3.93) we can express the sojourn
time through the dwell time (3.173) averaged with |�(E )|2 over the energy

tsoj(0, l) = 1

2

∫ ∞

0

dE

2π�
|�(E )|2

∫ l

0
dz|ψ(z; E )|2 = 1

2

∫ ∞

0

dE

2π�
|�(E )|2td(0, l,E ). (3.200)

Here in the last equation we take into account the different normalization of the wave function
ψU used in equation (3.173) and the wave function ψ , equation (3.190) used in the expansion
(3.193), which produces the factor 1/v needed in equation (3.173).

Let us now illustrate how the above formulae work for the case of very narrow isolated
resonances. The preparation of the initial wave function �(z, 0) for such a quasi-stationary
state can be done by putting an infinite wall somewhere inside the barrier or one can use the
simple method of [80]: in the potential (3.161) we extend the barrier to infinity by putting
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l → ∞. In the latter case we can expand the initial localized wave function in terms of the
wave functions (3.191) as

�(z, 0) =
n∑
i

ciψ
(bound)
i (z)+

∫ ∞

U

dE

2π�
c̃(E ) ψ(z,E ),

n∑
i=1

|ci|2 +
∫ ∞

U

dE

2π�
|c̃(E )|2 = 1.

(3.201)

The wave function under the integral is given by equation (3.187) for E > U . If we now
suddenly recover the initial form of the potential (in the time � �/min(|εi − εi+1|) for i < n)
then the wave function does not change and we can substitute it in equation (3.194), and using
the wave functions (3.187) and (3.190) obtain

�(E ) ≈
n∑
i

ci

√
�Ai(E )+�(E ) θ (E − U ), (3.202)

where the part �(E ) corresponds to the modes over the barrier which do not contribute to the
resonant scattering and can be thereby dropped.

For simplicity let us now assume that the initial wave function corresponds to only one
jth bound state with 1 < j < n. We have ci = δi j and c̃(E > U ) = 0, and |�(E )|2 ≈ �Aj(E ).
Since close to the resonance energy the dwell time is td(0, l,E ) ≈ �Aj(E ), we find

tdec ≈ tsoj(0, l) ≈ 1

2

∫ ∞

0

dE

2π

��2
j(

(E − ER, j)2 + �2
j/4
)2

≈ 1

2

∫ ∞

−∞

dE

2π

��2
j(

(E − ER, j)2 + �2
j/4
)2 = �

� j
. (3.203)

Here we have used that for ER, j � � j the lower limit of the integration can be extended
to −∞. Hence, the particles that occupied at t = 0 a narrow quasi-stationary state with the
width �, will appear with the probability of the order of one to the right of the barrier after
the passing of time �/�. Compare it with equation (2.27) introduced in classical mechanics in
section 2.

The explicit form of the survival probability amplitude follows from equation (3.196):

G(t) =
∫ ∞

0
Aj(E ) e−iEt/� dE

2π�
= e−iER, jt/�−� j t/2� + (1 − i)√

2

∫ ∞

0

� j e−Et/�
√

ER, j/E

(iE + ER, j)2 + �2
j/4

dE

2π
.

(3.204)

To get this expression we assumed the energy dependence of the width �(E ) � �
√

ER, j/E,
as it follows from analysis of the available phase-space of the 1D problem at small energies,
and rotated the contour of integration to coincide with the imaginary axis. For t � �/ER, j we
find

G(t) � e−iER, jt/�−� jt/2� + (1 − i)√
8π

� j

ER, j

(
�

ER, j t

)1/2

. (3.205)

For times of t � tdec log
(
8π E3

R, j/�
3
j

)
, i.e. almost in the whole time interval of interest, the

second term can be neglected. If we extend integration to −∞ using that Aj(E ) is the sharp
function of E near ER, j > 0, we get

G(t) �
∫ ∞

−∞
Aj(E ) e−iEt/� dE

2π�
� e−iER, jt/�−� jt/2�. (3.206)

Thus, the correction term in (3.204) is fully compensated by the contribution of negative
energies.
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We see that in the case of a decaying system we deal with a packet propagating outwards
from the resonator with an effective energy distribution given by Aj(E ). As we argued in
section 3.8, the emergence of the packet on the outer side of the barrier cannot last shorter
then δtvar ∼ �/γ = tγdec, see the Mandelstam–Tamm inequality (3.140), where γ is the
dispersion of the energy distribution. However, for the Lorentz distribution Aj(E ) (i.e. for
� j = const) the dispersion would be infinite. Here we have to remember that the resonance
wave functions (3.190) can be used only for energies not far from the resonance one, i.e. for
E ∈ [ER, j − α� j,ER, j + α� j], for α� j � |ER, j+1 − ER, j|. Taking these energy limits into
account we can estimate

γ 2 �
∫ +α� j

−α� j

dE

2π�
E2Aj(E + ER, j)

/∫ +α� j

−α� j

dE

2π�
Aj(E + ER, j) = �2

j

(2α − arctan 2α)

4 arctan 2α
.

(3.207)

For α � 3.58 we get γ � � j. The condition γ � � looks rather natural for the description of
the wave packet in a quasi-stationary state.

Thus, the probability to find a particle outside the barrier becomes essentially non-zero
before the maximum of the wave packet (according to the latter’s position one defines the
scattering group time) has reached the point z = l with advancement ∼ tγdec ∼ �/� (if we put
γ � �), and the real forward delay time is given by

δtf = ts − tγdec, (3.208)

cf. equation (3.141) above. This quantity demonstrates an advance of the formation and
decay of the intermediate states forming in the scattering on the potential (3.161) at energies
|E − ER| > �/2 and a delay at energies in the vicinity of the resonance, for |E − ER| < �/2.

Considering a scattering of a packet with an energy distribution �(E ) on the potential
well (3.161), we may introduce the quantity

t̄s(E ) =
∫

dE

2π�
|�(E )|2ts(E ) ≈

∫
dE

2π�
|�(E )|2 �

2
Ai(E ). (3.209)

Here |�(E )|2 is normalized as in equation (3.195). For the Gaussian wave packet |�(E )|2 =√
2π�2/γ 2 exp(−(E − E )2/2γ 2) in the limit of a narrow energy distribution γ � � we

derive t̄s(E ) = ts(E) and in the opposite limit case of a very broad distribution γ � � we get
t̄s(E ) = 1/γ . Thus δtf(Ē ) = t̄s(E )− 1/γ for γ � � and δtf(E ) = 0 at γ � �, and only for a
very specific choice of the energy distribution in the packet (e.g. for a Lorentzian distribution
with γ � �) we arrive at δtf = t̄s(Ē )− 1/�, as we obtained above for the case of an initially
localized state.

It is instructive to rewrite the survival probability amplitude (3.196) in the following
form

G(t) = i
∫ ∞

0
dz
∫ ∞

0
dz′�∗(z, 0)GR(t, z, z′)�(z′, 0), (3.210)

where we introduce the retarded Green’s function GR(t, z, z′), which describes the evolution
of the wave function,�(z, t) = ∫∞

0 dz′GR(t, z, z′)�(z, 0) forward in time, i.e. GR(t, z, z′) ≡ 0
for t < 0, cf. the same quantity in classical mechanics (2.24), (2.30) and (2.31). The Green’s
function is expressed through the eigenfunctions (3.190) and (3.187)

GR(t, z, z′) =
∫ ∞

−∞

dE

2π
GR(E, z, z

′) e−iEt/�, GR(E, z′, z) =
∫ ∞

0

dE ′

2π�

ψ(z; E ′) ψ∗(z′; E ′)
E − E ′ + i0

.

(3.211)
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The small shift of the pole in the last integral in the lower complex semi-plane assures that the
Green’s function vanishes for t < 0, since

θ (t) e−iEt/� = i
∫ +∞

−∞

dE ′

2π

e−iE ′t/�

E ′ − E + i0
. (3.212)

For energies E < U and for the case of narrow resonances we can use the wave function of the
resonance states (3.190) with the replacement of their coordinate parts by the wave functions
of the corresponding bound states (3.191). Then the coordinate and energy dependence of the
Green’s function separate as follows

GR(E, z′, z) ≈
n∑

i=1

GR
i (E )

[
ψ
(bound)
i (z′)

]∗
ψ
(bound)
i (z),

GR
i (E ) =

∫ ∞

0

dE ′

2π

Ai(E )

E − E ′ + i0
= 1

E − ER,i + i
2�i
. (3.213)

If the initial wave function (3.201) contains only one state j, the expression (3.206) reduces
to the following one

G(t) = i
∫ +∞

−∞
dzGR(t, z, z) = iGR

j (t) ≈ −
∫ ∞

−∞

dE

2π i

e−iEt/�

E − ER, j + i
2� j

= θ (t) e−iER, jt/�−� jt/2�.

(3.214)

The function A(E ) plays the role of the spectral density and can be defined as

A(E ) = −2
∫ +∞

−∞
dz Im GR(E, z, z). (3.215)

If we assume that initially we deal not with a pure quantum mechanical state (3.201) but
with a mixed state such that

�(z′, 0)�∗(z, 0) ≈
( n∑

i=1

nT (εi)

)−1 n∑
i=1

nT (εi)ψ
bound(z′)[ψbound(z)]∗,

which contains a number of quasi-stationary states characterized by the thermal Fermi/Bose
occupations nT , we find that the decay of such a system is described by

GT (t) �
∫ ∞

0

dE

2π
A(E ) nT (E ) e−iEt

/∫ ∞

0

dE

2π
A(E ) nT (E ). (3.216)

This expression is to be compared with equation (5.40) written below with the help of the
Wigner densities.

3.10. Causality restriction

From (3.179), (3.180) we arrive at the inequality

δts � − l

v
− �

2kv
. (3.217)

This restriction (cf. [116]) differs from the corresponding condition, which we have derived (for
R = l) in classical mechanics (see equation (2.81)) by the presence of the second term in the
right-hand side of (3.217). The latter term is of purely quantum origin. It shows the time which
the particle needs in order to pass a half of the de Broglie wavelength, λ = �/k. Following the
uncertainty principle free quantum particles cannot distinguish distance ξ < �/2k.
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4. Time shifts in non-relativistic quantum mechanics: 3D-scattering

4.1. Scattering of the wave packet on the potential

In the 3D scattering problem there appears new specifics. At large distances from the interaction
zone the wave packet is presented as

�(�r, t) =
∫

d3k

(2π�)3
F (�k − �p )ψ�k e−iEkt/�, (4.1)

whereF (�k−�p ) is the wave packet amplitude peaked at�k = �p and the stationary wave function

ψ�k � eikz/� + eikr/�

r
f (E, θk) (4.2)

is the sum of the incident and the scattered (∝ f ) waves [52], normalized to unit amplitude in
the incident wave. The cross-section is determined through f as

dσ = | f |2 d	, f (θ ) =
∞∑

l=0

(2 l + 1) fl Pl(cos θk), (4.3)

cf. equation (2.90), (2.91). The scattering amplitude is expressed through the phase shift:

fl = �

k
sin δl(k) eiδl (k). (4.4)

As follows from this expression, the amplitude fl is related to the elements of the S and
T -matrices [52] as: Sl − 1 = Tl = 2ik fl/�, Sl = e2iδl . We would like to bring to reader’s
attention that the partial phase δl vanishes identically if the scattering potential is put to zero.
Thus the corresponding quantity in classical mechanics is δcl − δcl(U = 0) in equation (2.20).

Presenting E = Ep + δE and k = p + δE/vp + · · · in equation (4.1), we recognize
in the scattered wave the factor exp[i δE

�
(r/vp − t + �

∂ ln fl (Ep)

∂Ep
)], vp = p/2Ep. Thus, using

equation (4.4) we find the time delay/advance of the scattered wave

δtl
s = � Im

∂ ln fl(Ep)

∂Ep
= �

∂δl(Ep)

∂Ep
. (4.5)

On the other hand, expanding the plane wave part of the wave function (4.2), eikz/�, in the
Legendre polynomials one gets a series of converging and diverging waves:

ψ�k � �

2ikr

∞∑
l=0

(2l + 1)Pl (cos θk)
[
(−1)l+1e−ikr/� + e2iδl (k) eikr/�

]
. (4.6)

The first term in the squared brackets, the converging wave, arises as a part of the incident
wave. The second term is the result of the superposition of scattered waves (∝ f ),

ψs � �

kr

∑
l

(2l + 1)Pl (cos θk) sin δl(k) eiδl (k)+ikr/�, (4.7)

and the incident wave eikz/�. Note that the optical theorem (Im f (0) = k
4π�

∫ | f |2d	) arises
as a consequence of subtle interference that takes place in the forward direction.

From the second term in the squared brackets (4.6) one finds the average exit time
delay/advance of the diverging waves with the angular momentum l (the lth partial wave) [1],

δtl
W = 2�

∂δl

∂Ep
. (4.8)

This result includes the interference with the incident wave and is twice as large than the
time delay of the purely scattered wave (4.5). The converging wave ∝ eiδE(r/vp−t)/� propagates
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without any delay. Reference [67] (see also [2]) introduced the collision life-time for elastic
collisions, as a difference between the time of the particle flight in presence of the potential
and the free-flight time and found the relation

Ql = lim
R→∞

∫ R (
ψ̃∗

l ψ̃l − 2

4πvr2

)
d3r = −i�

dSl

dE
S∗

l = δtl
W, (4.9)

with ψ̃l normalized here to unit incident flux. Note that equation (4.9) coincides with the
definition of the dwell time, cf. equation (3.23), but now for the diverging waves only and
with other normalization. As we will see in section 6, the meaning of the collision time is
different. We also stress that δtl

W has the meaning of the group delay/advance of the diverging
wave occurring only at large distances, cf. discussion of the wave zone in section 2.2.1. The
same wave at short distances near the scattering center is disturbed and is delayed/advanced
differently.

Besides time delays/advancements δtl
s and δtl

W, the corresponding wave packets undergo
a smearing since velocities of the particles depend on the energy. To be specific consider the
diverging wave packet for given l (cf. second term in (4.6)):

ψl � �

2ikr
(2l + 1)Pl (cos θk) e2iδl (k)+ikr/�. (4.10)

Let

F (�k − �p ) = C δ(cos θk − cos θp) e−(k−p)2/(4γ 2
p ), C = const. (4.11)

By expanding the functions of k in k − p up to second order near the point k = p, replacing
these expressions in equation (4.1) and taking the integral we find the diverging wave packet,
�l , cf. [2],

�l = � (2 l + 1)Pl (cos θp)
2π3/2C p γ̃p

ir(2π�)3
exp

[
− γ̃p

2

�2

(
vpt − r − 2 vp �

∂δl

∂Ep
+ i�

p

)2
]
χ�p,

1

γ̃ 2
= 1

γ 2
+ 1

2p2
+ i

2m�

[
t − �

∂δl

∂Ep
− �

Ep

2

∂2δl

∂E2
p

]
, χ�p = eipr/�−iEpt/�+2iδl

p . (4.12)

To get the law of the time propagation of the maximum of the packet one needs to keep only
linear terms in the expansion. The smearing of the wave packet with passage of time appears
due to the second-order terms kept in the expansion. Because of the presence of the term
∂2δl

∂ p2 = 1
m
∂δl

∂Ep
+ v2

p
∂2δl

∂E2
p

the smearing of the wave packet is advanced or delayed in dependence

of the sign of the term ∂2δl

∂ p2 .
Similarly, we could consider the converging, the scattered and the incident wave packets.

We also could use the expansion (3.41) instead of equation (4.1) with a �(E, θk) distribution,
multiplied by δ(cos θk − cos θp), instead of equation (4.11). Thus these results are similar to
those derived above in section 3.8 in a 1D case.

[3, 19, 20] defined average time spent by the wave packet within a chamber as

tN
vol = 1

N

∫
dt t
∫

d	 r2(�n �j(r,	, t)), �n = �r/r. (4.13)

Here

N =
∫

dt
∫

d	 r2|�j �n | (4.14)

is the modulus of the integrated incident unit flux through the chamber surface, cf. the
expression for the classical sojourn time equation (3.95). The flow density associated with the
wave function � is given by equation (3.3). The value �j�n is positive, when the particle exits
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the volume, and negative, when it enters the volume. The incident current is the sum of the
scattering current and the interference term, �j = �js + �ji. Thereby we introduce time delays:
tN
vol = tN

s − δtN
i , all quantities being normalized by N.

Further, for simplicity, we consider only one l-partial wave. The scattering time normalized
by the scattered flux Ns is as follows

ts =
(

dNs

d	

)−1 ∫
dtt r2 (�js �n ) = tfree + δts,

Ns/N = 4 sin2 δl, (4.15)

cf. equations (4.7), (4.10), resulting in equation (4.5) for the scattering time delay/advancement.
Here tfree = r/v is the time of the free flight in one direction (at finite angles there is no
interference).

The interference delay/advancement time for a one partial wave normalized by the
scattered flux is (cf. [20])

− δti =
(

dNs

d	

)−1 ∫
dtt r2 (�ji �n ) = �

2

4 p2 | fl|2
∂

∂Ep
(p ( fl + fl

∗)) = cos(2δl )

2 sin2 δl
�
∂δl

∂Ep
. (4.16)

The total delay/advancement in the diverging wave is

δtN
vol = δtW = (δts − δti) 4 sin2 δl = 2 �

∂δl

∂Ep
. (4.17)

The factor 4 sin2 δl arose due to different normalizations in equations (4.15)–(4.17). From
here

δtvol = 2�

4 sin2 δl

∂δl

∂Ep
(4.18)

is the average time spent by the wave packet within the chamber normalized by the scattered
flux Ns.

4.2. Resonance scattering

For one Breit–Wigner resonance

tan δ = − �

2M
, M = E − ER, Ns = N � A, (4.19)

the forward delay/advance time

δtf ≡ δti = δts − tdec = − �(M2 − �2/4)

�(M2 + �2/4)
, (4.20)

being negative for |M| > �/2. Here the value

δtvol = δtN
vol/(4 sin2 δ) = tdec = �/� (4.21)

has the meaning of the decay time of the quasi-stationary state with complex energy ER − i�/2
(cf. equations (2.27), (3.203)).

The probability for a particle to enter the region of the resonance interaction is
P� = sin2 δ = �2/4

M2+�2/4 . Thereby the cross-section of the resonance scattering can be presented
as σ � 4πλ2P� , where λ = �/k is the de Broglie wavelength. For M = 0 (pure resonance)
the cross-section reaches its maximum σmax = 4πλ2.

The probability for a particle not to enter the region of the resonance interaction is
PM = cos2δ = M2

M2+�2/4 , P� + PM = 1. The scattering time delay is

δts = �
∂δ

∂E
= �

2
A = 2 tdec P�, (4.22)
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2tdec = δts(E = ER) = t (cl)
dec . The forward delay time,

δtf = �A/2 − tdec = tdec(P� − PM ), (4.23)

is the time delay of the decay due to the difference in the probability for the particle to enter
the region of the resonance interaction and not to enter this region.

In section 6 we shall see that for a many-particle system the value δtdec is the average time
between collisions. The forward delay/advance time, δtf, is then an average delay/advance
in the scattering counted from the collision time δtcol. Thus, this delay/advancement time
characterizes delays and advancements of collisions in quantum kinetic processes.

4.3. Scattering on hard cores

For the gas of hard core scatters [117] the scattering amplitude and its momentum derivative
are

tan δl = − jl(kR/�)

nl(kR/�)
,

∂δl

∂k
= − �

k2R
[

j2
l (kR/�)+ n2

l (kR/�)
] . (4.24)

E.g., for l = 0 from (4.24) we find δt0
s = �

∂δ0

∂Ek
= −R/v that agrees with equation (2.82) for

b = 0, θ = π . The same advancement, δtl
s = −R/v, arises for rapid particles kR/� � l2 at

l 
= 0. For slow particles, kR/� � l1/2, δtl
s ∝ (kR/�)2lR/v, since the wavelength λ = �/k � R

in this case and the propagating wave almost does not feel the presence of the sphere. For
l � 1 the cross-section becomes negligibly small.

4.4. Semiclassical scattering

The transition from the semiclassical expression for the phase shift [44]

δtscl
W = 2�∂δl

∂E
= 1

E

∫ ∞

0
(2U (r)+ r U ′(r))

2R2
l (r)

v∞
dr, (4.25)

where Rl(r) ∼ sin(kr/� − lπ/2 + δl ) is the radial wave function, to the classical
equation (2.17) occurs provided one exploits the semiclassical expression for the wave function
RM = √

v∞/vr sin(
∫ r

r0
vr dr/� + π/4). Substituting in equation (4.25) RM instead of Rl and

using that R2
M � v∞/(2vr) we arrive at the result for the classical Wigner time delay (2.21).

The probability of the decay of a long-lived state is determined by the imaginary part of
the action: W � e2 Im S/�. In the case of quasi-stationary level, the time-scale

tscl
dec = �/(2|Im E|), (4.26)

characterizes the decay of the state, where Im E is the imaginary part of the energy.
The scattering delay counted from the decay time in the given case is

δtscl
f = δtscl

W /2 − tscl
dec; (4.27)

cf. equation (4.20).

4.4.1. Ergodicity, time shifts and level density. For the scattering on the potential, as well
as for binary collisions, in the virial limit the energy level density (i.e. the density of states)
simply relates to the Wigner time delay as (see [20, 118])

dN level

dEp
− dNfree

dEp
= 1

2π�

∑
l

(2l + 1)δtl
W, (4.28)
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where dNfree

dEp
= 4πV p2

(2π�)3(dEp/dp) and V is the system volume, for binary collisions, dEp/dp is the

relative velocity of interacting particles and δtl
W is given by equation (4.8) for given l. Since

all thermodynamic quantities such as entropy and pressure can be calculated, if one knows the
density of states, this condition allows to express thermodynamical variables at low densities
in terms of the phase shifts and the time delays. It looks like an ergodic constraint: deviation
of the density of states from that for the ideal gas is limited in time by the Wigner time delay,
i.e. the delay of out-going waves.

For the scattering on the Breit–Wigner resonance the free term on the left-hand side (4.28)
should be dropped, since one should take into account that the phase additionally changes by
π when the energy passes the resonance region, see equation (4.19). Thus one has

δtW = 2�
∂δ

∂Ep
= 2π�

dN level

dEp
. (4.29)

Thereby δtW can be interpreted as a time delay in an elementary phase-space cell.

5. Time shifts in quantum field theory

5.1. Time contour formulation

From now on we use units � = c = 1. To be specific, we consider a multi-component system
with different constituents ‘a’ of non-relativistic particles and relativistic scalar bosonic field
operators, φ̂ = {φ̂a(x)}, where from now on x is a 4-coordinate. The free Lagrangian densities
of these fields are

L̂0
a =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

2

(
iφ̂†

a∂t φ̂a − i∂t φ̂
†
a · φ̂a − 1

ma
∇φ̂†

a∇φ̂a

)
non-rel. particles,

1

2

(
∂μφ̂a · ∂μφ̂a − m2

aφ̂
2
a

)
neutral rel. bosons,

∂μφ̂
†
a∂
μφ̂a − m2

aφ̂
†
a φ̂a charged rel. bosons.

(5.1)

We assume that these fields interact either via non-derivative coupling or via linear derivative
coupling. In the latter case the interaction Lagrangian depends not only on the fields but also
on their derivatives L̂int = L̂int{φ̂a, φ̂

†
a , ∂

μφ̂a, ∂
μφ̂†

a}. The variational principle of stationary
action determines Euler–Lagrange equations of motion for the field operators φ̂a

∂μ
∂L̂0

∂
(
∂μφ̂

†
a
) − ∂L̂0

∂
(
φ̂

†
a
) = ∂L̂int

∂
(
φ̂

†
a
) − ∂μ ∂L̂int

∂
(
∂μφ̂

†
a
) ≡ δL̂int

δφ̂
†
a (x)

, (5.2)

and the corresponding adjoint equations; cf. [37]. The ‘variational’ δ-derivative

δ

δ f (x)
. . . ≡ ∂

∂ f (x)
. . .− ∂μ

(
∂

∂(∂μ f (x))
. . .

)
(5.3)

of L̂int permits to include derivative couplings into the interaction Lagrangian L̂int. In fact,
the ‘variational’ δ-derivative means the full derivative over f (x), implying that all derivatives
acting on f (x) in the action should be redirected to other terms by means of partial integration
before taking derivative in f (x).

Further we suppress particle index ‘a’. The principle of stationary action leads to the
Euler–Lagrange equations of motion for the field operators [34]

− Ĝ−1
0 φ̂(x) = Ĵ(x) = δL̂int

δφ̂†
; (5.4)
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Figure 14. Schwinger–Keldysh time contour.

Ĝ−1
0 =

{−∂μ∂μ − m2 for relativistic bosons,
i∂t − 1

2m∂
2
�r for non-rel. particles,

(5.5)

cf. equation (2.23) of classical mechanics, which we introduced in section 2.1.1. The Ĵ(x)
operator is a local source current of the field φ̂, while Ĝ−1

0 is the differential operator of the
free evolution with the free propagator G0(y, x) as resolvent, x, y are 4-time–space points.

In the non-equilibrium case, one assumes that the system has been prepared at some initial
time t0 described in terms of a given density operator ρ̂0 =∑a Pa|a〉〈a|, where the |a〉 form a
complete set of eigenstates of ρ̂0. All observables can be expressed through n-point Wightman
functions of Heisenberg operators Â(t1), . . . , Ô(tn) at some later times

〈Ô(tn) . . . B̂(t2)Â(t1)〉 =
∑

a

Pa〈a|Ô(tn) . . . B̂(t2)Â(t1)|a〉. (5.6)

The non-equilibrium theory is formulated on a closed real-time contour (see figure 14)
with the time argument running from t0 to ∞ along the time-ordered branch and back to
t0 along the anti-time-ordered branch. Contour-ordered multi-point functions are defined as
expectation values of contour-ordered products of operators

〈TCÂ(x1) B̂(x2) . . .〉 = 〈TCÂI(x1) B̂I(x2) . . . e{i
∫

C L̂int
I dx}〉, (5.7)

where TC orders the operators according to a time parameter running along the time contour
‘C’. The left-hand side is written in the Heisenberg representation, whereas the right-hand
side, in the interaction (I) representation.

The contour ordering obtains its particular sense through the placement of external
points on the contour. One then has to distinguish between the physical space–time
coordinates x, . . . and the corresponding contour coordinates xC, which for a given x take
two values x− = (x−

μ ) and x+ = (x+
μ ), μ ∈ {0, 1, 2, 3}, on the time-ordered and anti-

time-ordered branches, respectively (see figure 14). Closed real-time contour integrations are
decomposed as∫

C
dx · · · =

∫ ∞

t0

dx− · · · +
∫ t0

∞
dx+ · · · =

∫ ∞

t0

dx− · · · −
∫ ∞

t0

dx+ · · · , (5.8)

where dx± = dx±
0 dx1 dx2 dx3 and only the time limits are explicitly given. Thus, the anti-

time-ordered branch acquires an extra minus sign, if integrated over physical times. For any
two-point function F , the contour values on the different branches define a 2 × 2-matrix
function

F i j(x, y) = F (xi, y j), i, j ∈ {−,+}, (5.9)

depending on the physical coordinates (x, y). The contour δ-function is determined as

δ
i j
C (x, y) = δC(x

i, y j) = σ i jδ4(x − y), σ i j =
(

1 0
0 −1

)
, (5.10)

where the matrix σ ik accounts for the integration sense on the two branches. For any multi-
point function, the external point xmax, which has the largest physical time, can be placed
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on either branch of the contour without changing the value, since the contour-time evolution
from x−

max to x+
max provides unity. Therefore, one-point functions have the same value on both

sides of the contour. Due to the change of operator ordering, genuine multi-point functions are
discontinuous in general, when two contour coordinates become identical.

Boson fields may take non-vanishing expectation values of the field operators φ(x) =
〈φ̂(x)〉. The corresponding equations of motion for these classical fields are provided by the
ensemble average of the operator equations of motion (5.4)

− Ĝ−1
0 φ(x) = J(x), φ = φ0(x)−

∫
C

dy G0(x, y) J(y), (5.11)

now in full analogy to equation (2.23), which we used in classical mechanics. Here
J(x) = 〈Ĵ(x)〉, while φ0(x) = 〈φ̂I(x)〉 is the freely evolving classical field, which starts
from φ0(t0,�x ) at time t0. Thereby, G0(x, y) is the free contour Green’s function

iG0(x, y) = 〈TCφ̂I(x) φ̂
†
I (y)

〉− φ0(x) (φ0(y))∗, (5.12)

which resolves the equation

Ĝ−1
0 G0(x, y) = δC(x, y) (5.13)

on the contour. Graphically equation (5.11) can be depicted as

= + iJ (5.14)

with the one-point function iJ(x) as the driving term.
Performing replacements in equation (5.11):

φ → mz, Ĝ−1
0 → −∂2

t − �∂t − E2
R, J → −m�z2 + F (5.15)

we arrive at the results for an anharmonic oscillator in an external field, see equations
(2.22)–(2.25) of section 2. Classical Maxwell equations follow with the help of the
replacements

φ → Aμ, Ĝ−1
0 → −∂ν∂ν, J → 4π

c
jμ. (5.16)

Subtracting the classical fields via φ̂(x) = φ(x)+ �̂(x), we define the full propagator in
terms of quantum-fluctuating parts φ̂(x) of the fields

i G(x, y) = 〈TC�̂(x )�̂
†(y)

〉 = 〈TCφ̂(x)φ̂
†(y)

〉− φ(x)φ∗(y). (5.17)

Averaging the operator equations of motion (5.4) multiplied by φ̂†(y) and subtracting
classical field parts one obtains the equation of motion for the propagator

Ĝ−1
0 (x)G(x, y) = δC(x, y)+ i

〈
TC Ĵ(x) �̂†(y)

〉
c, (5.18)

which is still exact and accounts for the full set of initial correlations contained in ρ̂0. The
sub-label ‘c’ indicates that uncorrelated parts are subtracted. The Feynman diagrammatic
representation of the processes is not yet possible at this level. This description level should
be still time reversible.

5.2. Weakening of short-range correlations and the Dyson equation

In order to proceed further one suggests that the typical interaction time tint for the change
of the correlation functions is significantly shorter than the typical time which determines
the system evolution. Then, describing the system at times t − t0 � tint, one can neglect the
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short-range correlations, which are supposed to die out beyond tint in line with the principle
of the weakening of initial and all short-range ∼ tint correlations [119]. After dropping higher
order correlations for the driving terms on the right-hand side of the equation of motion
(5.18) one can apply the standard Wick decomposition. With the help of (5.7) the driving
term can be expressed as functional of one-particle propagators rather than of higher order
correlations

i
〈
TCĴ(x)�̂†(y)

〉
c = i

∫
C

dz

〈
TC

∂

∂�̂I(z)

[
e{i

∫
C dz′L̂int

I }ĴI(x)
]〉

c1

〈
TC�̂(z)�̂

†(y)
〉

=
∫

C
dz�(x, z)G(z, y). (5.19)

Thus one recovers the Dyson equation in the differential form

Ĝ−1
0 (x)G(x, y) = δC(x, y)+

∫
C

dz�(x, z)G(z, y). (5.20)

Since we have separated the full propagator in equation (5.19), the self-energy of the particle,

− i�(x, y) = − 〈TCĴ(x)Ĵ†(y)
〉
c1 , (5.21)

here given in the Heisenberg picture, is one-particle irreducible (label c1), i.e. the corresponding
diagram cannot be split into two pieces, which separate x from y by cutting a single propagator
line. In diagrams free and full propagators are usually given by thin and thick lines, respectively.
Therefore the Dyson equation (5.20) in a graphical form is depicted as

= + −iΣ (5.22)

with two-point function −i�(x, y) as the driving term.
We would like to point out that in the derivation of the Dyson equation (5.20) with the

application of Wick decomposition we have already lost the time reversibility. Any loss of
information results in a growth of the entropy. Therefore, a dropping of short-range correlations
on each time step would lead to a growth of the entropy, associated with the thus obtained
Dyson equation, with time.

Actually, only two quantities among four Gi j are independent [34]. As these two quantities
it is convenient to use the quantity

F(t1,�r1; t2,�r2) = (∓)i G−+(x1, x2) = 〈�†(x2)�(x1)〉, (5.23)

which after the Wigner transform becomes the Wigner phase-space density and the retarded
Green’s function

i GR(x1, x2) =
{〈�(x1)�

†(x2)±�†(x2)�(x1)〉 for t1 > t2
0 for t1 < t2

, (5.24)

where the upper sign is for fermions and the lower one is for bosons. The equation for the
retarded Green’s function decouples:

GR(x1, x2) = GR
0 (x1, x2)+

∫
C

dx3

∫
C

dx4GR
0 (x1, x3)�

R(x3, x4)GR(x4, x2). (5.25)

The retarded self-energy �R fulfils the same relations (E.3) as the retarded Green’s function.
The quantity

A(x1, x2) = −2 Im GR(x1, x2) (5.26)

is the response function. Its Fourier transform is the spectral function, cf. equations (3.183),
(3.206). The Fourier transform of the quantity

�(x1, x2) ≡ −2 Im�R(x1, x2) (5.27)

73



J. Phys. G: Nucl. Part. Phys. 40 (2013) 113101 Topical Review

has the meaning of the particle width after proper normalization. In the energy–momentum
representation for the stationary spatially homogeneous systems these quantities reduce to
A(p0, �p ) and �(p0, �p ). For quasiparticles (when one puts �(p0, �p ) → 0 in the Green’s
function), the spectral function becomes the δ-function and determines the spectrum of
quasiparticles.

5.3. �-derivable approximation scheme

For any practical calculation one has to apply some approximation scheme. In the weak-
coupling limit, the perturbative expansion may be restricted to a certain order. Then no
particular problems are encountered as far as conservation laws are concerned, since they
are fulfilled order by order in perturbation theory. On the other hand, such perturbative
expansion may not be adequate, as, for example, in the strong coupling limit, where re-
summation concepts have to be applied. Such schemes sum up certain sub-series of diagrams
to any order. Furthermore, with the aim to solve dynamical equations of motion, such as
transport equations, one automatically re-sums all terms in the equations of motion to any
order.

A �-derivable approximation, first introduced by Baym [33] within the imaginary-time
formulation, is constructed by confining the infinite set of diagrams for � to either only a
few of them or some sub-series of them. Note that � itself is constructed in terms of ‘full’
Green’s functions, where ‘full’ now takes the sense of solving self-consistently the Dyson’s
equation with the driving terms derived from this � through the relation −i� = ∓δ�/δG. It
means that even restricting to a single diagram in�, in fact, we deal with a whole sub-series of
diagrams in terms of free Green’s functions, and ‘full’ takes the sense of the sum of this whole
sub-series. Thus, a �-derivable approximation offers a natural way of introducing closed,
i.e. consistent approximation schemes based on summation of diagrammatic sub-series. In
order to preserve the original symmetry of the exact �, we postulate that the set of diagrams
defining the�-derivable approximation complies with all such symmetries. As a consequence,
approximate forms of �(appr.) define effective theories, where �(appr.) serves as a generating
functional for approximate self-energies �(appr.)(x, y) = ∓δ�(appr.)/δG, which then enter
as driving terms in the Dyson equations (5.20). The propagators, solving this set of Dyson
equations, are still called ‘full’ in the sense of the �-derivable scheme. For such re-summing
schemes, the conservation laws are preserved [34–37].

5.4. The space–time structure of self-energy diagrams

Usually, one considers processes occurring in vacuum or in homogeneous matter in equilibrium
in the Fourier representation. It is also informative to study these processes in the space–time
representation, see [80, 120]. As a representative example we consider the correction to the
single particle Green’s function in the scalar φ3-theory

iδG(x2, x1) = x1 x2
x y

= α

C

dy iG(x2 − y) ( iVy)
C

dx iG(y − x) 2 (i Vx) i G(x − x1) .
(5.28)

Here iVx and iVy are the local vertices of the processes 1 ↔ 2 and α is the symmetry factor.
The contour integrations over internal points x = (tx,�x ) and y = (ty,�y ) cover the whole
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space–time region, as dictated by the Lorentz invariance. It can be visualized by switching to
the time-ordered diagrams (Schrödinger representation)

iδG(x2, x1) =

time ordering

x1 x2
x y

+

time ordering

x1

x2

x

y

. (5.29)

Here in the first diagram, the integration region tx < ty (t1 < tx < ty < t2) describes the time-
process of the decay of the particle, being in the state 1, at t = tx into two intermediate particles
in states 1′ and 2′, which then annihilate at the moment t = ty producing the particle in the state
2. In the second diagram in equation (5.29) the integration region ty < tx (t1 < ty < tx < t2)
corresponds to the process when three particles in states 1′, 2′ and 2 are created at t = ty,
two of which (1′, 2′) then annihilate at t = tx with the particle propagating in the state 1.
Also, the Lorentz invariance requires to use the same vertices for the scattering and creation
and annihilation processes (crossing symmetry). Generalization to more particles of different
species is straightforward. For instance the particle 1,2 can be the zero sound and 1′ and 2′, a
fermion and a fermion hole in case of the Fermi liquid.

For relativistic particles propagating in vacuum, the typical time interval between points
x and y in diagrams in equation (5.29) is the Compton time 1/m since the free particle
causal Green’s function in coordinate representation [80] is ∝ e−mx̃ for x̃ � 1/m, where
x̃ = √

(�x − �y )2 − c2(tx − ty)2. With inclusion of the higher order processes or other types of
interactions one deals with the dressed particle (describing by the dressed Green’s function).
The new typical time-scale characterizing the decay, |tx − ty| ∼ m/� (for relativistic bosons),
can be seen from the formal replacement m2 → m2 − i�/2. For the non-relativistic particle
propagating in matter (the causal Green’s function ∝ e−(iEp+�)|tx−ty|) the typical time of the
process is determined by its width computed through� = −2 Im�R(p0, �p ), where�R(p0, �p )
is the retarded self-energy in the Fourier representation. Thereby, in the latter case in the space–
time picture the processes in equation (5.29) occur with the maximum probability in the time
interval |tx − ty| ∼ 1/�. Thus, advances of the virtual processes on a time-scale ∼m/�
(for relativistic boson excitations) and ∼1/� (for non-relativistic excitations) dictated by the
Lorentz/Galilei invariance are in agreement with the time-energy uncertainty principle and do
not contradict the quantum causality.

For the weakly non-ideal Bose gas of non-relativistic particles with mass m the spectrum
of excitations (phonons) at very low temperatures is given by [121]

ω(�p ) =
√

u2�p 2 + (�p 2/2m
)2
, u =

√
4πan/m2, (5.30)

where a is the scattering length, n = N/V is the particle density. Inclusion of the loop-diagram
to the excitation self-energy induces the excitation width � = −2 Imω = dW/dt which
corresponds to the decay of the excitation with the dispersion law (5.30) in two excitations
with the same spectrum. The differential probability of the decay dW/dt can be determined
with the help of the Fermi Golden rule,

dW

dt
= 2π |Hfi|2δ(E f − Ei)

V 2 d3q1 d3q2

(2π)6
, (5.31)

where Hfi is the matrix element of the perturbation Hamiltonian and the excitation momenta
are related as �p = �q1 + �q2. The calculation in [121] gives � = 3p5

320πmn . For the zero
sound (boson excitation, here in relativistic kinematics) propagating in the cold Fermi liquid
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the intermediate states in the loop diagram correspond to the fermion–fermion-hole and
�(p0, �p ) = (m∗ 2 + 1

4 p2) p0/π |�p | describes the Landau damping of excitations in the space-
like region, for p0 < |�p |vF, where vF is the Fermi velocity, m∗ is the effective fermion mass
and the vertex in the loop-diagram is put to unity, see [122].

As the next example, consider the two-step process of the energetic proton scattering on
a nucleus A with the creation of the positive pion, which propagating in vacuum decays then
into the anti-muon, μ+ and the muon neutrino: p + A → n + A + π+, π+ → μ+ + νμ. The
characteristics of the process can be found, e.g., by computing the proton self-energy ‘+−’
diagram presented as

−iΣ+−
p (y2, y1) =

π+

n
π+

μ+

νμ

p p
y1 − y2+

x1 − x2+
(5.32)

where the stars indicate that the proton-to-neutron conversion takes place in the nucleus. In
vacuum the Fourier transform of this self-energy, �+−(p), gives the probability of that the
proton with momentum p being absorbed by the nucleus with radiation of the virtual pion
flying far away from the nucleus in vacuum, before it decays toμ+ and νμ. Here, the ‘++’ and
‘−−’ pion lines in (5.32) should include theμ+νμ loop, otherwise the self-energy (5.32) would
diverge. Thus, although appropriately normalized the vacuum pion width �πν of the reaction
π+ → μ+ + νμ is a tiny quantity, it should be consistently incorporated. Note that, if the
process occurred in a nuclear medium, the full virtual pion ‘++’ and ‘−−’ Green’s functions
would include also other processes. Nevertheless, the resulting cross-section remains ∝ �πν ,
mainly determined by the �+−

μν (x2, x1) loop-insertion. This is in line with our mechanical
example considered above in section 2.2.1, where the radiation cross-section enters the factor
�2

totB
2
rad = �2

rad, see equation (2.89).
To consider the variety of the processes self-consistently one can use the �-derivable

method, in which the reactions considered above are represented by diagrams

−iΦ =
nπ+

p

νμ

μ+

π+

y1
−

y2
+

x1 − x2+

+ . . . , (5.33)

where ellipses stand for the other seven diagrams with all possible combinations of ‘+/−’
signs in the vertices. All Green’s functions here are full in the �-derivable sense, i.e. with the
� constructed here up to two vertices. If we cut these diagrams through the proton ‘−+’ line
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we get the proton self-energy (5.32). Cutting through the neutrino ‘+−’ line we obtain the
neutrino self-energy

−iΣ−+
ν (x1, x2) =

π+

μ+

p

n
π+

νμ νμ
x2

+

x1

−+

y2

−
y1

+ . . . , (5.34)

which in the momentum representation yields the neutrino production rate. For the sake of
brevity we again show only one diagram out of four, which differ by the ‘+/−’ signs in the
y1 and y2 vertices. Note that only the shown diagram gives a non-vanishing contribution for
the neutrino production on mass-shell in the two-step process under consideration.

The self-energy diagrams in terms of the non-equilibrium diagram technique are very
convenient for calculations of reaction rates. It allows to keep explicitly self-consistent
Kramers–Kronig relations between the real and imaginary parts of the retarded self-energy.
This is in line with calculations of cross-sections in quantum mechanics, see section 4, with
the help of the imaginary part of the forward scattering amplitude, i.e. by making use of
the optical theorem. The closed diagram formalism formulated in terms of non-equilibrium
Green’s functions can be found in [123]. The same reactions can be also considered within
an ordinary Feynman diagram technique, via calculation of the squared matrix elements,
provided one deals with the asymptotic states for the in-coming and out-going particles. The
latter method is similar to the calculation of the cross-sections by angular integration of the
squared scattering amplitude | f (θ )|2 in quantum mechanics, cf. the Born approximation.

Finally, we stress that existence of time delays and advances of the processes described
by the diagrams in coordinate representation is purely the consequence of the Lorentz/Galilei
invariance of the theory and does not depend on the specific technique used (equilibrium, non-
equilibrium, closed diagram technique, calculation of probabilities of reactions via squared
matrix elements, etc).

5.5. Typical time delays and advances

Equation (5.11) for classical fields is similar to that which we have considered in classical
mechanics. Therefore at least in some specific cases the field dynamics is characterized by the
same typical time-scales as we considered above in section 2. Moreover, within the obtained
quantum field description there appear new typical time-scales for delays and advances.

(i) Since we neglected short-range correlations one can no longer distinguish time effects
on time-scale t � tint and spatial effects on space scale x � xint ∼ ctint. Thus, we further
consider a system at sufficiently large space–time scales only. Thereby, we assume that
the typical time-scale of the processes under consideration obeys inequality

t � tint. (5.35)

Only then can the system be described in terms of the Feynman diagrams. The interaction
time is of the order �int/c, where �int is the shortest distance at which we can use our
interaction model and the chosen degrees of freedom.

(ii) Some time-scales can be extracted right from expressions for the full single particle
Green’s functions (Gi j for i, j ∈ {+,−}, if one uses the non-equilibrium diagram
technique). Through the Dyson equations these Green’s functions are expressed in terms
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of the self-energies �i j. As we have mentioned, the equation for the retarded Green’s
function decouples from others and thus GR is expressed via �R.

Thus a relevant time-scale is the decay time tdec = 1/�, provided non-relativistic
kinematics is used, where � is the Fourier transform of −2 Im�R, cf. equations (2.27),
(3.203) and (4.21).

With the quantity A, where A is the Fourier transform of −2 Im GR, is associated the
scattering time delay δts = A/2 (for non-relativistic particles), as it has been introduced
above, cf. equation (3.192), which in the virial limit is δts = ∂δ

∂Ep
= 2π dN level

dEp
, cf. equations

(2.65), (2.66), (2.94), (4.22) and (4.29).
To demonstrate the existence of other relevant time-scales consider, as an example, a

spatially uniform equilibrium high temperature gas of non-relativistic Wigner resonances
(i.e., when �eq = −2 Im�R

eq and Re�R
eq, being Fourier transformed to the energy–

momentum space, do not depend on p0 on relevant energy–momentum scales). In the
mixed time–momentum representation

G(t1 − t2, �p ) =
∫

dp0

2π
G(p0, �p ) e−i p0(t1−t2) (5.36)

and the retarded Green’s function is explicitly given by

GR
eq(t1 − t2, �p ) = −i e−i Ep(t1−t2)− 1

2�eq(t1−t2) for t1 > t2; (5.37)

GR = 0 for t1 < t2, Ep = E0
p + Re�R

eq, E0
p = p2

2m , cf. equation (3.214). Using the
Kubo–Schwinger–Martin relation [24] for the Fourier transformed equilibrium Green’s
functions, Feq(p0, �p ) = Aeq(p0, �p ) feq(p0, �p ) in the mixed representation we find

Feq(t1 − t2, �p) =
∫

dp0

2π
Aeq(p0, �p ) f Bol

eq (p0, �p ) e−i p0(t1−t2)

= e
μ

T −i Ep (t1−t2−δtT
s )− 1

2�eq (t1−t2−δtT
col). (5.38)

Here Aeq is the spectral function for equilibrium system, f Bol
eq = e(μ−p0 )/T is the equilibrium

Boltzmann distribution function, μ is the chemical potential determined by the total
number of particles N. The new time-scales are

δtT
s = �eq

2 Ep T
, δtT

col = − 2 Ep

�eq T
. (5.39)

The value δtT
s shows a scattering delay time and δtT

col is the collision advancement time
for equilibrium processes. For typical energies Ep ∼ T , δtT

col ∼ −1/�eq. Thus the latter
quantity demonstrates an advance of particles of thermal energies compared to particles
being at rest. Note that in subsection 5.4 we demonstrated a principle possibility of time
advances ∼ 1/� (being there of the order 1/�πν). Here, such an advance is shown to arise
for averaged values of the particle energies.

(iii) Since integration over z in equation (5.20) in intermediate reaction states includes all
times −∞ < tz < ∞, for ty < tz < tx the process that occurs at tz is delayed compared
to that which occurs at ty, and for tz < ty < tx the process which occurs at tz is advanced
compared to that which occurs at ty. Both time processes should be incorporated as dictated
by the Lorentz invariance, cf. the discussion in the previous subsection. In figure 15 we
demonstrate an example of a time delay (a) and an advancement (b) in the specific two-step
processes p → n + X + π+

virt, π
+
virt → νμ + μ+, considered in the previous subsection in

terms of a closed self-energy diagram. Such processes play an important role in the recent
neutrino OPERA experiment [41]. Let the life-time of the off-mass-shell pion produced
in the process p → n + X + π+

virt be tdec
Nπ = 1/�Nπ and in the process π+

virt → νμ + μ+,
tdec
πν = 1/�πν . The time tdec

ν = tdec
Nπ + tdec

πν characterizes the duration of the full two-step
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(a) (b)

Figure 15. A graphical representation of the two-step processes p → n+X +π+
virt, π

+
virt → ν+μ+,

as they occur in the neutrino experiment of the OPERA group [41].

process. This means that virtual pions, being produced in the process p → n + X + π+
virt,

undergo in the subsequent process π+
virt → νμ + μ+ time delays and advances on a time-

scale −tdec
πν � t2 − t1 � tdec

πν , where t2 characterizes the act of the production of νμ and t1,
of the absorption of p. Note that tdec

Nπ � tdec
πν .

The uncertainty in the production time reflects also the fact that a system undergoing
some transition to a new state (e.g., a decay process) does not have the certain energy and
is described in quantum mechanics by a wave packet of a finite width. The corresponding
time-scale is obviously of the order of 1/�, where � is the width; cf. equation (3.140).
(Here we once more stress that for relativistic bosons the value � = −2 Im�R has
dimensionality of m2 and should be still appropriately normalized to get the meaning of
the particle width.)

(iv) One may yet introduce another time-scale, similarly to that which we have introduced in
classical and quantum mechanical descriptions. For example, for a (1 + 1)-dimensional
problem the quantity

t (1D)
soj (a, b; τ )=

∫ τ

0
dt
∫ b

a
dzF (1D)(t, z; t, z)

/∫
dzF (1D)(t, z; t, z) (5.40)

is similar to that given by equation (2.3) and (3.92), and for 3 + 1 theory,

tsoj(τ ) =
∫ τ

0
dt
∫

d3rF(t,�r; t,�r)

/∫
d3rF(t,�r; t,�r) (5.41)

is similar to that given by equations (2.15) and (4.13).

6. Time shifts in quantum kinetics

6.1. Wigner transformation and gradient expansion

Consider slightly inhomogeneous and slowly evolving systems. Then in the spirit of the
semiclassical approximation degrees of freedom can be subdivided into rapid and short-
ranged, and slow and long-ranged. For any two-point function F (x, y), one may introduce the
variable ξ = (t1 − t2,�r1 −�r2), which relates to rapid and short-ranged microscopic processes,
and the variable X = 1

2 (t1 + t2,�r1 + �r2), which refers to slow and long-ranged collective
motions. The Wigner transformation [124], i.e., the Fourier transformation in ξ = x − y to
4-momentum p, leads to F (X, p) functions. Since the Wigner transformation is defined for
physical time–space coordinates rather than for contour coordinates one has to decompose
the contour integrations into the time-ordered {−} and the anti-time-ordered {+} branches.
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Two-point functions then become matrices of the contour decomposed {−+} components with
physical space–time arguments. Thus

F i j(X, p) =
∫

dξ eipξ F i j

(
X + ξ

2
,X − ξ

2

)
, i, j ∈ {−+} (6.1)

leads to a 4-phase-space representation of two-point functions.
The Wigner transformation of the Dyson equation (5.20) is straightforward. Taking the

difference and half-sum of the Dyson equation (5.20) and the corresponding adjoint equation
after the Wigner transformation we arrive at equations

ivμ∂
μ
X Gi j(X, p) =

∫
dξ eipξ

∫
C

dz(�(xi, z)G(z, y j)− G(xi, z)�(z, y j)), (6.2)

Q̂X Gi j(X, p) = σ i j + 1

2

∫
dξ eipξ

∫
C

dz(�(xi, z)G(z, y j)+ G(xi, z)�(z, y j)), (6.3)

where σ i j accounts for the integration sense on the two contour branches, cf. equation (5.9).
For non-relativistic kinematics vμ = (1, �p/m) and Q̂X = p0 − �p2/2m − ∂2

�X
/8m. In this matrix

notation, two of equations (6.2) and (6.3), involving G−+ and G+− on the left-hand side,
are known as Kadanoff–Baym (KB) equations in the Wigner representation [24]. Particular
combinations of these equations lead to the retarded and advanced equations, which completely
decouple and involve only integrations over physical times rather than contour times.

We will solely deal with the gradient approximation for slow collective motions by
performing the gradient expansion of equations (6.2) and (6.3). This step preserves all the
invariances of the � functional in a �-derivable approximation [35]. Within the gradient
expansion the Wigner transformation of a convolution of two two-point functions entering the
Dyson equations (6.3), (6.2) is given by∫

dξ eipξ

(∫
dz f (x, z)ϕ(z, y)

)
≈ f (X, p)ϕ(X, p)+ i�

2
{ f (X, p), ϕ(X, p)}, (6.4)

where

{ f (X, p), ϕ(X, p)} = ∂ f

∂ pμ
∂ϕ

∂Xμ
− ∂ f

∂Xμ
∂ϕ

∂ pμ
(6.5)

is the Poisson bracket in covariant notation. Note that the smallness of the �∂X ·∂p comes solely
from the smallness of space–time gradients ∂X , while momentum derivatives ∂p are not assumed
to be small. Such a description is meaningful only if the typical time and space scales are large
compared to microscopic ones |ti −t j| ∼ tmic ∼ (1/EF, 1/ET), |�ri −�r j| ∼ rmic ∼ (1/pF, 1/pT)

(for the low energy excitations in the Fermi system and for the Boltzmann gas, respectively,
where index F labels the Fermi quantity and T, the thermal one).

6.2. Three forms of the quantum kinetic equation

Only two real functions of all Gi j(X, p) are required for a complete description of the
system’s evolution [35]. For these real functions it is convenient to use the Wigner density
F(X, p) = (∓)iG−+(X, p) and the spectral function A(X, p). The kinetic equation for off-
shell particles is ordinarily presented in two different forms: in the KB form, i.e. as it follows
right after the first-order gradient expansion in the Dyson equation for the Wigner density
[24],

D̂ F(X, p)− {�in(X, p), Re GR(X, p)} = C(X, p), (6.6)

80



J. Phys. G: Nucl. Part. Phys. 40 (2013) 113101 Topical Review

and in the Botermans–Malfliet (BM) form [32]; see the discussion of these aspects in [35].
Similarly the kinetic equation can be written for F̃(X, p) ≡ iG+−(X, p). The collision term

C(X, p) = �in(X, p) F̃(X, p)− �out(X, p)F(X, p) (6.7)

is the difference of the gain and loss terms, �in(X, p) = ∓i�−+(X, p) (in the co-variant
notations of [35]) is the reduced production (gain) source term, �out(X, p) = i�+−(X, p) is
the reduced absorption (loss) term. The differential drift operator is defined as

D̂(· · ·) = {Re[G−1(X, p)], . . .} = Z−1
μ (X, p)

∂

∂Xμ
+ ∂ Re�R(X, p)

∂Xμ
∂

∂ pμ
, (6.8)

with

Z−1
μ (X, p) = ∂

∂ pμ
Re[G−1(X, p)] = vμ − ∂ Re�R(X, p)

∂ pμ
, vμ = ∂

∂ pμ
G−1

0 (p). (6.9)

Here G−1
0 (p) is the Fourier transform of the inverse free Green’s function (5.5):

G−1
0 =

{
p2 − m2 for relativistic bosons,
p0 − �p 2/(2m) for non-rel. particles,

(6.10)

m is the mass of the free particle. The BM form is obtained from the KB equation, if one
puts �in(X, p) = �(X, p)F(X, p)/A(X, p) in the Poisson-bracket term. This replacement is
legitimate, if one assumes only small (the first gradient order) deviations from the local or
global equilibrium (in the local and global equilibrium the collision term C(X, p) = 0). Then
the BM form differs from the KB form only in the second order of the gradient expansion
(more precisely in the first-order gradient times the first-order deviation from equilibrium),
see [35] for details. At first glance these equations are equivalent in their common region of
validity. However the KB equation has still one important advantage. It fulfils the conservation
laws of the Noether 4-current and of the Noether energy–momentum exactly [36, 37] provided
self-consistent, i.e., � derivable approximations are used, whereas the BM form fulfils the
conservation laws only approximately (up to zero gradients). Moreover the KB equation can be
applied not only to the description of the relaxation of the system toward the local equilibrium
but in many other problems in which the BM form is not applicable.

The third, non-local, form of the kinetic equation was introduced in [40]:

D̂F(X, p)−
{
�(X, p)

F(X, p)

A(X, p)
, Re GR(X, p)

}
= CNL(X, p)

=
(

1 +
{

1

A(X, p)
, Re GR(X, p)

})
Cshift(X, p),

Cshift(X, p) = C (Xμ − δXμ, pμ − δpμ),

δXμ = 1

A(X, p)

∂ Re GR(X, p)

∂ pμ
, δpμ = − 1

A(X, p)

∂ Re GR(X, p)

∂Xμ
. (6.11)

If we replace CNL(X, p) → C(X, p) we obtain the BM form. If we expand CNL(X, p) up to
first gradient terms we arrive at the KB equation. Thus equation (6.11) coincides with the BM
form up to the first-order gradients and with the KB equation up to second-order gradients.

The retarded Green’s function is

GR(X, p) = 1

M(X, p)+ i�(X, p)/2
+ O

(
∂2

X

)
(6.12)

and

A(X, p)≡ −2 Im GR(X, p) � �(X, p)

M2(X, p)+ 1
4�

2(X, p)
(6.13)
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is the spectral function with the ‘mass’ function and the width given by

M(X, p)= G−1
0 (p)− Re�R(X, p), �(X, p)≡ −2 Im�R(X, p) = �out(X, p)± �in(X, p),

(6.14)

cf. the introduced above definitions (5.27) and (5.26). We see that expression (6.13) has the
same resonance form, as equations (2.65), (2.66) in the mechanical example considered in
section 2, as equation (2.94) in the classic-electrodynamical example and as equation (3.206)
in the quantum mechanical example considered in section 3. Although the solution (6.12),
(6.13) is simply algebraic, it is valid up to first-order gradients.

To simplify the further consideration we imply that in the relativistic case separation
of particle and antiparticle degrees of freedom is performed. Therefore, below we deal with
particle species. Antiparticle quantities can be introduced similarly.

In equation (6.11) the Wigner densities can be presented as

F(X, p) = A(X, p) f (X, p), F̃(X, p) = A(X, p)(1 ∓ f (X, p)), (6.15)

where f (X, p) is a new generalized distribution function. In a local equilibrium this function
takes the form

fl.eq(X, p) = 1

e[pμ uμ(X )−μ(X )]/T (X ) ± 1
, (6.16)

where uμ(X ) = (1, �u(X ))/
√

1 − �u 2(X ) and �u(X ) is the local velocity of a tiny element of the
system. This distribution turns the collision term to zero.

Using equation (6.15) we are able to derive another form of the non-local kinetic
equation (6.11):

1

2
A2(X, p)�(X, p)

(
D̂ f (X, p)− M(X, p)

�(X, p)
{�(X, p), f (X, p)}

)
= A(X, p) Cshift(X, p),

Cshift(X, p) = Cshift(X, p)

Ashift(X, p)
, Ashift(X, p) = A(Xμ − δXμ, pμ − δpμ). (6.17)

Equation (6.17) up to the second-order gradients coincides with the KB equation and up to
the first-order gradients coincides with the BM form, cf. the kinetic equation in the BM form,
equation (3.28) in [35]. Note that besides the non-locality introduced by the shift of variables,
Cshift and C may still include memory effects, if the generating 2PI � functional contains
diagrams with more than two vertices.

The key point which we want further to focus on is the variable shift in the collision term

δXμ(X, p) ≡ (δtkin
f , δ�r f ) = 1

A(X, p)

∂Re GR(X, p)

∂ pμ
= 1

2
Bμ(X, p)− Z−1,μ(X, p)

�(X, p)
,

δpμ(X, p) = − 1

A(X, p)

∂Re GR(X, p)

∂Xμ
, (6.18)

where

Bμ(X, p) = (B0(X, p),B0(X, p)�vgr(X, p)) = −2 Im

[(
vμ − ∂ Re�R(X, p)

∂ pμ

)
GR(X, p)

]
= A(X, p)

[
vμ − ∂ Re�R(X, p)

∂ pμ
− M(X, p)

�(X, p)

∂�(X, p)

∂ pμ

]
(6.19)

is a flow spectral function and

�vgr(X, p) =
�v + ∂ Re�R(X,p)

∂�p + M(X,p)
�(X,p)

∂�(X,p)
∂�p

v0 − ∂ Re�R(X,p)
∂ p0

− M(X,p)
�(X,p)

∂�(X,p)
∂ p0

(6.20)
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has the meaning of a generalized group velocity of off-mass-shell particles, see [125]. The latter
quantity generalizes the expression for the energy p0-integrated transport velocity introduced
in [126] and applied for localization phenomena and resonance scattering.

The non-local kinetic equation (6.17) can be rewritten in a more convenient form

AμS (X, p)
∂ f (X, p)

∂Xμ
+ A(X, p)

[
∂ Re�R(X, p)

∂Xμ
− �(X, p)

A(X, p)

∂ ReGR(X, p)

∂Xμ

]
∂ f (X, p)

∂ pμ

= A(X, p)Cshift(X, p). (6.21)

This will be the key equation for our further study. Here

AμS (X, p) = 1
2 A(X, p) �(X, p)Bμ(X, p). (6.22)

The first term on the left-hand side of equation (6.21) is the entropy drift term, the
second term relates to the spatial changes of a mean field. Dropping in equation (6.21)
4-phase-space delays/advances in the collision term, i.e. replacing Cshift(X, p) → C(X, p) =
C(X, p)/A(X, p), we arrive at the BM form of the kinetic equation. In the latter case AμS (X, p)
is the BM Markovian (BMM) entropy flow spectral function (memory effects are ignored)
relating to the entropy flow associated with the BM form of the kinetic equation [35]:

SμBMM(X ) = Tr
∫

d4 p

(2π)4
AμS (X, p)σ (X, p), (6.23)

where

σ (X, p) = ∓(1 ∓ f (X, p)) ln(1 ∓ f (X, p))− f (X, p) ln f (X, p), (6.24)

satisfying the equation of motion

∂

∂Xμ
SμBMM(X ) = −H(X ) = Tr

∫
d4 p

(2π)4
ln

1 ∓ f (X, p)

f (X, p)
C(X, p). (6.25)

The symbol Tr implies summation over internal degrees of freedom like spin, etc.
It is easy to demonstrate that the kinetic equation in the BM form conserves the BM

effective current exactly [37, 39]

jμS (X ) = eTr
∫

d4 p

(2π)4
AμS (X, p) f (X, p), (6.26)

provided we work within the�-derivable approximation scheme, whereas the Noether current

jμNoether(X ) = eTr
∫

d4 p

(2π)4
vμA(X, p) f (X, p) (6.27)

and the effective B-current

jμB (X ) = eTr
∫

d4 p

(2π)4
Bμ(X, p) f (X, p) (6.28)

are conserved approximately (up to zero gradient order). Here e is the (electric, baryon or
other) charge of the species and summation over the species, if necessary, is implied.

The maxima in the flow AμS (X, p), the flow Bμ(X, p) and vμA(X, p) are shifted relatively to
each other in the energy–momentum space. The difference of (6.26) and (6.28) to the Noether
current (6.27) is that the former two quantities contain contributions of the drag and back
flows. The drag flow is associated with the term − ∂ Re�R

∂ pμ
A and the back flow, with −M

�
∂�
∂ pμ

A
in the Bμ spectral function (6.19). The presence of these terms causes some additional delays
and advances in the propagation of dressed off-shell particles.

The expressions for currents (6.26)–(6.28) are derived from the simple form of the 2PI-
generating � functional. As soon as the � functional includes diagrams with more than two
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vertices, there appears an additional term in the currents—a so-called memory current jμmem,
see equation (6.42) below, and, if the interaction contains derivative couplings, there is yet
another ‘derivative’ current term jμder. The same relates also to the entropy flow.

If we expand Cshift in (6.17) up to the first gradients as

A(X, p) Cshift(X, p) = A(X, p)
(
�in

shift(X, p)− �shift(X, p) f shift(X, p)
)

�C(X, p)+ {�in(X, p)− �(X, p) f (X, p),Re GR(X, p)}, (6.29)

we arrive at the generalized kinetic equation in the KB form for the distribution function
f (X, p):

A(X, p)D̂ f (X, p)+ f (X, p){�(X, p),Re G(X, p)} − {�in(X, p),Re G(X, p)} = C(X, p),

(6.30)

where the collision term

C(X, p) = A(X, p) �in(X, p)− A(X, p) �(X, p) f (X, p),

A(X, p)D̂ = B̃μ(X, p)
∂

∂Xμ
+ A(X, p)

∂ Re�R(X, p)

∂Xμ
∂

∂ pμ
, (6.31)

B̃μ(X, p) = (A(X, p)Z−1
0 (X, p),A(X, p)Z−1

0 (X, p)�̃vgr(X, p)
)
, (6.32)

and the generalized group velocity

ṽi
gr(X, p) = Z−1,i(X, p)

Z−1
0 (X, p)

=
vi + ∂ Re�R(X,p)

∂ pi

v0 − ∂ Re�R(X,p)
∂ p0

, i = 1, 2, 3, (6.33)

differ from the quantities introduced with the help of equations (6.19), (6.20). Recall that v0 = 1
for non-relativistic particles and 2p0 for relativistic bosons. The BM form is obtained after
replacement �in(X, p) = �(X, p) f (X, p)+O(∂x) in the second Poisson bracket in (6.30). The
KB equation (6.30) exactly conserves the Noether current (6.27), provided approximations are
�-derivable [36, 37] and it approximately (up to zero-gradient order) conserves the effective
current (6.26) and the effective current (6.28).

Note that, since for off-mass-shell particles p0 and �p can vary independently, the value
ṽgr(X, p) is not necessarily limited from the above by the velocity of light, it might be even
not positively definite. Also, the factor Z−1

0 (X, p) is not, in general, positively definite which
leads to a non-trivial procedure of the particle–antiparticle separation for virtual particles.
As known [127], in the quasiparticle limit Zqp

0 (X, p0(�p), �p) > 0 determines the quasiparticle
spectrum branches and the branches with Zqp

0 < 0 are related to the anti-quasiparticles after
the replacement p0 → −p0 and �p → −�p. To be specific, we will further assume Z−1

0 > 0,
considering only the particle and not the anti-particles.

The spectral functions A, B0, A0
S fulfil sum-rules9∫

B0(X, p)
dp0

2π
=
∫
v0A(X, p)

dp0

2π
=
∫

A0
S(X, p)

dp0

2π
= 1; (6.34)

cf. the sum-rules (2.32), (2.67) and (3.185), (3.195), which we obtained in classical and
quantum mechanics. Note that the sum-rule for A(x, p) follows directly from the canonical
equal-time (anti-)commutator relations for (fermionic) bosonic field operators.

Having at hand the kinetic equation for F(X, p) (either in KB or in BM form) and the
algebraic equation for A is sufficient to recover all kinetic quantities. However there exists still

9 Generally speaking, the sum-rules presented in such a form hold for non-relativistic particles and for relativistic
neutral bosons. In the former case the integration goes from −∞ to ∞, in the latter case from 0 to ∞. Otherwise,
antiparticle terms are not decoupled.
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one more equation, the so-called mass-shell equation [35], which, as well as the KB equation
(6.30), follows from the full Dyson equations expanded up to the first gradient order:

M(X, p)A(X, p) f (X, p)− Re GR(X, p)�in(X, p) = 1
4 {�(X, p), f (X, p)A(X, p)}

− 1
4 {�in(X, p),A(X, p)}. (6.35)

Presenting �in(X, p) = f (X, p) �(X, p)+ δ�in(X, p), �out(X, p) = (1 ∓ f (X, p))�(X, p)+
δ�out(X, p), such that in equilibrium δ�in

eq(X, p) = δ�out
eq (X, p) = 0, and using equation (6.14),

from (6.35) we find

δ�in(X, p) = 1

4 Re GR(X, p)
{ f (X, p),A(X, p) �(X, p)} + O(∂2

x ) = ∓δ�out(X, p). (6.36)

Generally speaking the mass-shell equation should be considered on equal footing with the
kinetic equation. [35] proved equivalence of this equation to the kinetic equation in the BM
form up to first gradients. However in the general case equivalence of (6.35) and the KB
equation (6.30) is not proven.

6.3. Memory effects

A general treatment of the memory effects is a cumbersome task. Following [35], as an example,
consider a system of non-relativistic fermions interacting via contact two-body potential V0.
The self-energy up to three-vertex diagram becomes

−iΣ =−i Σ(1) + Σ(2) + Σ(3) = + + .

(6.37)

The local part of the collision term is presented in the form

C(2) + C
(3)
loc = d2 d4p1

(2π)4
d4p2

(2π)4
d4p3

(2π)4

⎛
⎜⎜⎝ −

+

−

− 2

−

−

− 2
⎞
⎟⎟⎠

×(2π)4δ4 (p + p1 − p2 − p3) F2 F3 F F1 − F2 F3 F F1 ,

(6.38)

where all the vertices in the off-shell scattering amplitudes are of the same sign, say ‘−’ for
definiteness, i.e. there are no ‘+−’ and ‘−+’ Green’s functions left, d accounts for summation
over internal degrees of freedom, e.g. spin. Now the collision term contains a non-local part
due to the last diagram (6.37).

The current and the entropy flows are expressed in terms of the loop functions

Ljk(x, y) =
yk xj

which in the Wigner representation take the form

L jk(X, p) =
∫

d4 p

(2π)4
L̃ jk(X, p′ + p, p′), (6.39)
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where

L̃ jk(X, p′ + p, p′) = d iV0 iGjk(X, p′ + p) iGk j(X, p′). (6.40)

The first-order-gradient memory correction to the collision term induced by the third
graph (6.37) is

C(3)mem(X, p) = [�(3)+−,mem(X, p)G−+(X, p)− G+−(X, p)�(3),mem
−+ (X, p)

]
= i

2

∫
d4 p′

(2π)4
1

d
[̃L+−(X, p′ + p, p)− L̃−+(X, p′ + p, p)]

×{L+−(X, p′),L−+(X, p′)}p′,X . (6.41)

The memory current follows from integration of (6.41):

jμmem(X ) = e
∫

d4 p

(2π)4
i

2
L+−(X, p)L−+(X, p)

∂

∂ pμ
(L+−(X, p)+ L−+(X, p)). (6.42)

The expression for the entropy flow is more cumbersome but it simplifies in the case of the
local equilibrium:[
Sμmem(X )

]
l.eq =

∫
d4 p

(2π)4
i

2
L−+(X, p)L+−(X, p)

[
ln

L+−(X, p)

L−+(X, p)
− 1

]
∂L−+(X, p)

∂ pμ
. (6.43)

6.4. Positive definiteness of kinetic quantities

In contrast with a purely quantum case considered above in section 3, in the semiclassical
approximation the Wigner distributions F(X, p) and F̃(X, p) prove to be positively semi-
definite [35]. To show this we first integrate over a large space–time volume. Using the
operator definition for the Green’s functions (5.17) we arrive at∫

dXF(X, p) =
〈(∫

dy eipyφ̂†(y)

)(∫
dx e−ipxφ̂(x)

)〉
� 0, (6.44)

and likewise for self-energies � expressed through the current–current correlator. Thus, we
get constraints∫

dXF̃(X, p) � 0,
∫

dXF(X, p) � 0,
∫

dX�out(X, p) � 0,
∫

dX�in(X, p) � 0.

(6.45)

Similar relations are obtained for the integration over 4-momentum space rather than space and
time. As a result, in stationary and spatially homogeneous systems, in particular in equilibrium
systems, the quantities F , F̃ , �out and �in are real and non-negative, i.e.

F(p) � 0, F̃(p) � 0; �out(p) � 0, �in(p) � 0. (6.46)

In deriving constraints (6.45) and (6.46) one uses the operator picture rather than the Dyson
equation for the Green’s functions. Any approximation, in particular if formulated in the space
of Green’s functions, may spoil such rigorous statements like (6.44). Still both the�-derivable
scheme and the gradient approximation preserve the retarded relations among the different
contour components and the retarded and advanced functions of any contour function, with
definite values for the imaginary parts of the corresponding retarded Wigner functions

A(X, p) � 0, �(X, p) � 0, (6.47)

which even hold locally. In particular, solution (6.12) for the retarded Green’s function shows
that all retarded relations hold locally, treating the momentum part as in the homogeneous
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case and considering the space–time coordinate X as a parameter. Close to equilibrium, i.e.
for |C| � �inA and |C| � �outA, one finds that

�out(X, p) ≈ f�(X, p) > 0 �in(X, p) ≈ (1 ∓ f )�(X, p) > 0, (6.48)

as long as the Wigner densities F and F̃ are non-negative. As the gradient approximation is
a quasi-homogeneous approximation, one may therefore expect the positivity of �in and �out

even to be preserved in the here-discussed self-consistent treatment. Also diagrammatic rules
may corroborate this, since the diagrams for�in and�out are calculated, as in the homogeneous
case.

6.5. Time advances and delays

It is rather natural to expect that the time and the position characterizing collisions of
propagating particles undergo some shifts, if one incorporates the fact that collisions are
not instant. In accordance with the uncertainty principle and the ergodicity the energy and the
momentum are shifted as well. This is taken into account in the non-local form of the kinetic
equations (6.11), (6.17); see also equation (6.18). These effects are absent in the kinetic
equation written the BM form. In [35] the corresponding Poisson-bracket terms in the KB
kinetic equation (see equation (6.30)) responsible for this phenomenon were associated with
quantum fluctuations.

From (6.18) we find for the time delay/advance of collisions:

δtkin
f = δtB

s − tcol, δtB
s = B0/2, tcol = Z−1

0 /�. (6.49)

Here and further on in this subsection we will not write out the arguments (X, p) of the
quantities, unless it is explicitly needed. The value δtB

s can be formally expressed through the
quantity having the meaning of an in-medium scattering phase shift [40]

δtB
s = B0

2
≡ ∂δ(n)

∂ p0
, tan δ(n) ≡ − �

2M
, (6.50)

where n = j0
Noether indicates the dependence of δ on the particle density. Note that the quantity

(6.50) describes the delay/advancement of the dressed particles (or the corresponding group of
waves) at arbitrary distances in contrast with a similar quantity δts (4.22), which we exploited
in the description of the resonance quantum mechanical scattering, showing delay/advance of
the scattered waves, as measured at large distances. The second relation (6.50) demonstrates
the measure of proximity of the virtual particle to the mass-shell. In the virial limit, B0

2 → ∂δ
∂ p0

,
where δ has already the meaning of the real scattering phase shift. E.g. for the πN� system,
the B�0 spectral function of the�(1232) isobar relates to the energy variation of the scattering
phase shift δπN

33 of the P33 partial wave coupled to the � resonance. For the pion, Bπ0 in the
virial limit relates to the phase shift of the nucleon hole–�-scattering. For the nucleon, BN

0
relates to δπ�. Since following equation (6.19) B0 is expressed through A, the scattering time
δtB

s can be presented as the sum of the Noether scattering delay and the drag and the back
delay/advance terms:

δtB
s = δtA

s + δtdrag
s + δtback

s ,

δtA
s = v0A

2
> 0, δtdrag

s = −A

2

∂ Re�R

∂ p0
, δtback

s = −AM

2�

∂�

∂ p0
. (6.51)

The collision time tcol in equation (6.49) has the meaning of the average time between collisions.
The value tcol does not contain a factor two compared to the classical decay time tcl

dec given by
equation (2.27) of section 2, although in both cases � enters the poles of the retarded Green’s
function similarly. This is because tcol describes the dynamics of the Green’s function (quadratic
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form) rather than dynamics of the classical field (the z-variable in classical mechanics). Also,
compared to the quantities tcl

dec (see equation (2.27) section 2), tdec, tscl
dec (see equations (4.21),

(4.26) section 3), the value tcol contains an additional renormalization factor; cf. also equation
(5.39) section 5. Thereby the collision time can be presented as the sum of the decay time and
the drag delay/advance terms:

tcol = tdec + δtdrag
col ,

tdec = v0

�
> 0, δtdrag

col = −∂ Re�R

∂ p0

1

�
. (6.52)

The value δtkin
f given by equation (6.49) can be as positive as negative. The sum-rules (6.34)

for A, B0 and A0
S can now be presented as∫

dp0

2π
δtA

s =
∫

dp0

2π
δtB

s =
∫

dp0

2π
δtAS

s = �

2
, δtAS

s = AS

2
, (6.53)

∫
dp0

2π

(
tcol + δtkin

f

) = �

2
. (6.54)

Thus, in accord with the energy-time uncertainty principle (cf. [58, 128]), δtB
s , δtB

s , δtAS
s are

minimal resolution times of the corresponding wave packets. The collision time tcol ∼ tdec is
the time needed for the decay of an unstable system. The value δtkin

f is the minimal resolution
time counted from the collision time, i.e. an average time interval between two successive
collisions. The corrected causality condition for collisions should now read as

t − r/vgr − δtkin
f � 0. (6.55)

In section 3 we present the relation between the level density and the particle scattering
phase shift. The density of states is often determined as [129]:

dN level
A

dp0/(2π)
=
∫

d3X d3 p

(2π)3
v0A(X, p0, �p). (6.56)

Thereby in accord with equation (6.27) the level density (6.56) is related to the Noether particle
density,

dNNoether

d3X dp0/(2π)
= dN level

A

d3X dp0/(2π)
f (X, p0, �p). (6.57)

Note that even in the limit of a small width the spectral density A should include both the
quasiparticle term and regular terms, see equation (6.74) below, so that in the case of the
conserved number of particles (e.g. baryons) NNoether would coincide with the full number of
particles: with the only quasiparticle Green’s function equation (6.56) becomes incorrect.

We could introduce the level density of interacting particles differently relating it to the
interacting particle density (6.26) (cf. [130]),

dN level
AS

dp0/(2π)
=
∫

d3X d3 p

(2π)3
A0

S(X, p0, �p), (6.58)

or relating it to (6.28) with B0 spectral function [131]

dN level
B

dp0/(2π)
=
∫

d3X d3 p

(2π)3
B0(X, p0, �p). (6.59)

Since following equation (4.29) in the virial limit the level density is related to the Wigner
delay time, from equations (6.56), (6.58) and (6.59) we find relations

δtA
W = v0A, δtAS

W = AS, δtB
W = B0. (6.60)
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For the non-relativistic particle scattering on a potential B0 = A and with δtB
W, as well

as with δtA
W, we recover results (4.8), (4.22) derived in section 4. For multi-component

systems the total Noether current can be presented as jtot
μ = ∑

jNoether
ν ; see [34]. On the

other hand, the interaction between different species can be redistributed in many ways. For
example, the interaction from some species can be redistributed to other ones; cf. [132]. In the
latter case the currents of some properly dressed species are described by equation (6.58) or by
equation (6.59), whereas some other species undergo free motion. For example, for the case of
a resonance like the� or ρ-meson resonances in hadron physics, the B0-function relates to the
energy variations of scattering phase shift of the scattering channel coupling to the resonance
in the virial limit [131, 133]. Similarly, in a quantum mechanical scattering divergent and
scattered waves are relevant quantities only at large distances, being strongly distorted at short
distances near the scatterer.

From equation (6.42) using equations (4.29), (6.59) and (6.60) we may also recover the
memory Wigner delay/advance time

δtmem
W = 1

2

∂(L+− + L−+)
∂ p0

L+−L−+, (6.61)

provided self-energies include diagrams with more than two vertices. The value δtmem
W ∝ V 3

0
and therefore δtmem

W disappears in the virial limit.
Finally, note that the quantities t (1D)

soj (a, b; τ ) given by equation (5.40) and tsoj(τ ) given
by (5.41), where F is the exact non-equilibrium Green’s function, have the same form, being
expressed through the Wigner density F in the Wigner representation.

6.5.1. Time advances and delays for Wigner resonances. For the Wigner resonances Re�R

and � are assumed to be independent of p0 and equation (6.49) is simplified as

δtkin
f = δtB

s − tcol = −v0

�

M2 − �2/4

(M2 + �2/4)
= δtf = δtA

s − tdec. (6.62)

The energy-weighted time shift
∫ dp0

2π �Aδtkin
f = 0.

The value δtA
s = v0

�/2
M2+�2/4 > 0 coincides with the scattering time delay, δts = ∂δ

∂ p0
,

introduced in quantum mechanics, see equation (4.5). The collision time coincides with the
quantum mechanical time, δtvol = 1

2 sin2 δ

∂δ
∂ p0

, when all the delays are put into scattering,
see equation (4.13), (4.21). Thus, the value −tcol = −tdec = −v0/� < 0 has the meaning
of the collision time advance. The value δtkin

f given by (6.62) coincides with the quantity
δtf = −δti = − cos(2δ)

2 sin2 δ

∂δ
∂ p0

(see equation (4.20)), being a forward delay/advance time. A
propagating wave packet gets a delay/advance δti due to interference of the incident and
reflected waves. The collision term gets a corresponding advance/delay δtf = −δti, being the
scattering time counted from the collision time, since actual collision for the particles with
the width may occur a time ∼tcol earlier than it happens in the case of the zero width. In the
limit |M| � � there is a time delay δtf = v0/�, for |M| � � there arises a time advance
δtf = −v0/� and for |M| = �/2, δtf = 0.

6.6. Test-particle method

The conserving feature is especially important for devising numerical simulation codes based
on the kinetic equation. If a test-particle method is used, one should be sure that the number
of test particles is conserved exactly rather than approximately. In the test-particle method the
distribution function F (not f ) satisfying equation (6.11) is represented by an ensemble of test
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particles [40]

F(X, p) ∼
∑

i

δ(3) (�x − �xi(t)) δ
(4)(p − pi(t)), (6.63)

where the i-sum runs over test particles, p = (p0, �p ). Then the drift term in the KB equation
for F (derived from (6.11) if one expands the collision term in gradients including the first
gradient terms) just corresponds to the classical motion of these test particles subjected to
forces inferred from Re�R(X, p), while the collision term gives a stochastic change of test-
particle’s momenta, when their trajectories ‘cross’. For a direct application of this method,
however, there is a particular problem with the kinetic equation in the KB form. An additional
Poisson-bracket term {�in,Re GR} appears that spoils this simplistic picture, since derivatives
acting on the distribution function F arise here only indirectly and thus cannot be included
in the collision-less propagation of test particles. This problem, of course, does not prevent a
direct solution of the KB kinetic equation applying lattice methods, which are, however, much
more complicated and time-consuming as compared to the test-particle approach.

The effective BM-current was used in [134] as a basis for the construction of a test-particle
ansatz for numerical solution of the non-relativistic BM kinetic equation. To fulfil the effective
current conservation one introduces the test-particle ansatz for

1

2
�B0F(X, p) ∼

∑
i

δ(3) (�x − �xi(t)) δ
(4)(p − pi(t)), (6.64)

rather than for the distribution function itself. Note that the energy p0
i (t) ≡ Ei(t) of the test

particle is an independent coordinate, not restricted by a mass-shell condition. [135] used this
test-particle ansatz in the relativistic case.

The BM kinetic equation together with ansatz (6.64) for the distribution function result
in the set of equations for the evolution of parameters of the test particles between collisions

d�xi

dt
= 1

v0 − ∂Ei Re�R − (M/�)∂Ei�

(
�vi + ∇pi Re�R + (M/�)∇pi�

)
, (6.65)

d�pi

dt
= 1

v0 − ∂Ei Re�R − (M/�)∂Ei�

(∇xi Re�R + (M/�)∇xi�
)
, (6.66)

Ėi = 1

v0 − ∂Ei Re�R − (M/�)∂Ei�

(
∂t Re�R + (M/�)∂t�

)
. (6.67)

All functions on the right-hand side are evaluated in the point (t,�xi(t),Ei(t), �pi(t)). These
equations of motion, in particular, yield the time evolution of the mass term M, of a test particle
[134, 135]

dMi

dt
= Mi

�i

d�i

dt
, (6.68)

the origin of which can be traced back to the additional term {�F/A,Re GR} in the BM
equation. Here Mi(t) = M[t,�xi(t); Ei(t), �pi(t)] measures an ‘off-shellness’ of the test particle
and �i(t) = �[t,�xi(t); Ei(t), �pi(t)]. Equation of motion (6.68) yields |Mi| = αi�i, where
αi > 0 do not depend on time and implies that once the width drops in time the particles are
driven toward the mass on-shell, i.e. to M = 0. This clarifies the meaning of the additional
term {�F/A,Re GR} in the off-shell BM kinetic equation (which follows from (6.11), if
one suppresses variable shifts in the collision term): it provides the time evolution of the
off-shellness.

For the non-local form of the kinetic equation [40] the set of equations for the evolution
of parameters of the test particles between collisions is the same as in the BM case. The only
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difference with the BM case is that collisions of test particles occur with certain time (and
space) delay (or advance) as compared with the instant of their closest approach to each other.

Following equation (6.18) the shift of the space variables is

δ�x = 1

A

∂ Re GR

∂�p
= δ�xdrift + δ�xcol = 1

2
�B + �̃vgrtcol. (6.69)

We can further express the spatial shift in terms of the time delays and velocity d�x
dt of a test

particle on its trajectory (cf. equation (6.65)),

δ�xi = d�xi

dt
δtB

i,s + �̃vi,grti,col. (6.70)

Equation (6.70) demonstrates that before a delayed/advanced collision the test particle moves
along its trajectory. Therefore, the scattering time delay δtB

i,s unambiguously results in a definite
space shift. The collision itself is associated with an additional time delay ti,col, which implies
that the collision is not instant, as it is treated in the BM kinetic equation, but requires a certain
time for complete decoupling from intermediate states (e.g., the pion spends some time in
the intermediate �–nucleon-hole state, a soft photon requires a certain time to be formed in
multiple collisions of the proton with neutrons). Therefore, this additional delay gives rise to
an additional shift of the particle with respect to its ‘collision-less’ trajectory (6.65).

6.7. The quasiparticle limit

The quasiparticle limit is understood as the limit when Green’s functions are computed at
Im�R → 0. The quasiparticle width�qp(X, �p) = −2 Im�R(X, �p,A → Aqp) is then calculated
with the quasiparticle Green’s functions and the associated quasiparticle spectral functions Aqp.
The latter ones reduce in this limit (|M| = α�, |α| � 1) to,

Aqp(X, p) = 2πZqp
0 (X, �p ) δ(p0 − Ep(X, �p )),

Zqp
0 (X, �p ) =

(
v0 − ∂ Re�R(X, p)

∂ p0

)−1

p0=Ep(X,�p )

, (6.71)

where Ep(X, �p) stands for the energy of a quasiparticle, being the root of the dispersion
relation

M(X, p0 = Ep(X, �p ), �p) = 0, (6.72)

Zqp
0 (X, �p ) > 0 on the quasiparticle branch p0 = Ep(X, �p ).10

The quasiparticle spectral function does not fulfil the exact sum-rule (6.34) but fulfils the
corresponding quasiparticle sum-rule∫

Zqp
0 (X, �p )Aqp(X, p)

dp0

2π
= 1. (6.73)

Formally, within the quasiparticle picture this problem is avoided by a renormalization, after
which one may already deal only with the quasiparticle degrees of freedom, being well-
separated from the degrees of freedom in the continuum. The reason for the difference between
the exact and quasiparticle sum-rules is that the quasiparticle current jμqp = ( jqp

B )
μ = ( jqp

S )
μ

includes the quasiparticle drag flow and, thereby, differs from the Noether current. This
difference is compensated due to the conservation of the Noether current by the presence of
the back flow, as a back reaction of the whole energy sea to the particle drag flow. Thus, the

10 Here, for simplicity we assume that there is only one quasiparticle branch. Generalization is obvious.
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exact sum-rule (6.34) for A is recovered, provided one includes the width term. It is easily
demonstrated in the case of a weak interaction [136]. Then

A(X, p) � 2πZqp
0 (X, �p )δ(M(X, p))+ P �(X, p)

M2(X, p)
� 2π δ(p0 − Ep(X, �p )), (6.74)

where P indicates the principal value. The required sum-rule is recovered after using the
Kramers–Kronig relation between � and Re�.

The integration of all three forms of the kinetic equation, the BM form, the KB
equation (6.30) and the non-local equation (6.21) over dp0/(2π) yields one and the same
kinetic equation describing the quasiparticle propagation in matter:

∂ fqp(X, �p )

∂t
+ �v qp

gr (X, �p )∇ fqp(X, �p )− ∇Ep(X, �p )
∂ fqp(X, �p)

∂�p
= Cqp(X, �p ), (6.75)

here Ep obeys mass-shell condition (6.72),

Cshift
qp (X, �p) =

∫
dp0

2π
Aqp(X, p)Cshift(X, p; A → Aqp)→ Cqp(X, �p)

and the quasiparticle group velocity is

�v qp
gr (X, �p ) = ∂Ep(X, �p )

∂�p
=

(
�v + ∂ Re�R(X,p)

∂�p

)
p0=Ep(X,�p )(

v0 − ∂ Re�R
qp(X,p)

∂ p0

)
p0=Ep(X,�p )

. (6.76)

The authors of [137] constructed a non-local kinetic equation in an extended quasiparticle
approximation, which included a non-local collision term. Note that their finding of
cancellation of off-shell terms and remaining non-local shifts is in agreement with a similar
cancellation demonstrated then in [36, 37] within the �-derivable approach to the kinetic
KB and BM equations. Conservation laws are also fulfilled for their non-local extended
quasiparticle kinetic equation, that turns out to make the link between non-local quantum
shifts to classical ones, see [138].

In the quasiparticle limit the BMM entropy, equation (6.23), reads

Sμqp =
∫

d3 p

(2π)3

√
1 − [�v qp

gr (X, �p )
]2[

uqp
gr (X, �p )

]μ
σqp(X, �p ), (6.77)

where we introduced notation[
uqp

gr (X, �p )
]μ =

⎛⎝ 1√
1 − [�v qp

gr (X, �p )
]2 , �v qp

gr (X, �p )√
1 − [�v qp

gr (X, �p )
]2
⎞⎠ . (6.78)

The quasiparticle group velocity can significantly differ from the phase velocity. In atomic
Bose–Einstein condensates [139] the light can be slowed down to the speed 17 m/s (a so-called
slow light). The light also becomes ultra-slow in the hot atomic vapor of rubidium [140]. On the
other hand, the quasiparticle group velocity can easily exceed the velocity of light in medium
c(n), c(n) < c. It manifests as the Cherenkov radiation. An instability of quasiparticle modes
also arises in a moving medium [122, 141, 142] (even if the modes are stable in the static
medium), provided |�u||�p| > Ep(p), where �u is the speed of the medium and Ep(p) is the
quasiparticle spectrum branch. As the result, a spatially inhomogeneous condensate of Bose
excitations may be formed. This phenomenon is similar to the Cherenkov effect and shock
wave generation.

Obviously, the values of time delays are unlimited. The question of a possible limitation on
the time advance and the possibility to have vgr

qp > c are subtle issues. As argued in [103, 104],
such a possibility does not contradict causality. However the velocity of the wavefront vfr
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should always be limited by c; see [18] and references therein. An apparent superluminal
propagation manifested in some laser experiments can be understood as the consequence of
a reshaping of the pulse envelope by interaction within the medium, see the discussion in
[14–16, 18]. Although formally vgr exceeds c, the forward wavefront moves with velocity � c,
as it should be. There are also arguments that the advance of the pulse of light in materials is
generally limited only by few pulse widths (so-called fast light). Thereby, the interpretation
of a negative group delay as a superluminal propagation is, according to [16], a semantic
question, since the speed of the information transport never exceeds c; see [17].

Reference [126] used the p0-averaged BM equation and averaged distributions,

f B(X, �p ) =
∫

dp0

2π
B0(X, p) f (X, p). (6.79)

Averaged values

�v B
gr(X, �p ) =

∫
dp0

2π
B0(X, p)�vgr(X, p), �̃v

B
gr(X, �p ) =

∫
dp0

2π
B̃0(X, p) �̃vgr(X, p),

�v S
gr(X, �p ) =

∫
dp0

2π
AS(X, p)�vgr(X, p), (6.80)

yield one and the same value �v gr
qp in the quasiparticle limit. It is worthwhile to mention that the

quantity�vgrB0 enters (through �B) the expression for the entropy flow (6.23) associated with the
information transport. Therefore one may hope that the quantities (6.80) behave reasonably in
the whole (p0, �p) plane.

Finally, to avoid possible confusion recall that there are no limitations on the values of the
phase velocity and the group velocity ṽgr(p0, �p ) for off-mass-shell particles given by equation
(6.33). However, the condition vgr(p0, �p ) < c might be satisfied. For example, in the case of
a Fermi liquid the width of particle–hole excitations �(p0, �p ) ∝ p0 for p0 → 0, cf. [122],
and the restriction vgr(p0, �p ) < c is then recovered, as it follows from equation (6.20). Taking
into account the dependence �(p0, �p ) ∝ p0 is also important in some other problems, e.g.
in the description of the growth of a static classical pion condensation field in dense isospin
symmetric nuclear matter [133]. Also we arrived at such a dependence in the description
of damped oscillations in section 2. However, in general, it is not formally excluded that
vgr(p0, �p ) > c for p0 in some space-like region.

For moving media, an instability of off-mass-shell modes with p0 < |�u| |�p| may result in
some measurable effects, like a heating of the medium; cf. [122, 143].

6.8. Kinetic entropy and time delays

Any loss of information results in an increase of the entropy [144]. Thus, it is important to find
and compare values of the entropy related to the BM, KB and non-local forms of the kinetic
equations.

First, let us for simplicity disregard memory effects. Above, see equation (6.23), we
introduced the expression for the BMM kinetic entropy flow. It also can be rewritten as
follows [35]

SμBMM(X ) = Tr
∫

d4 p

(2π)4

[(
vμ − ∂ Re�R(X, p)

∂ pμ

)
A(X, p) σ (X, p)

− Re GR(X, p)

(
∓ ln(1 ∓ f (X, p))

∂

∂ pμ
[�(X, p) (1 ∓ f (X, p))]

− ln f (X, p)
∂

∂ pμ
[�(X, p) f (X, p)]

)]
. (6.81)
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This contribution is of the zero-gradient order. Similarly, one derives [37] an expression for
the KB Markovian part of the entropy flow (KBM) relating to equation (6.30),

SμKBM(X ) = Tr
∫

d4 p

(2π)4

(
vμ − ∂ Re�R(X, p)

∂ pμ

)
×
[

A(X, p) σ (X, p)

− Re GR(X, p)

(
∓ ln(1 ∓ f (X, p))

∂�out(X, p)

∂ pμ
− ln f (X, p)

∂�in(X, p)

∂ pμ

)]
.

(6.82)

For a discussion of the H theorem it is necessary to get the entropy flow including first-
order gradient terms. The KB entropy flow contains an extra first-order gradient term compared
to the KBM result [37],

∂μSμKB(X ) = ∂μSμKBM(X )+ ∂μδSμKB(X )+ δμcor(X ), (6.83)

where

δSμKB(X ) = −Tr
∫

d4 p

(2π)4
M(X, p)

�(X, p)
C(X, p)

∂

∂ pμ
ln

1 ∓ f (X, p)

f (X, p)
. (6.84)

In general, C ∝ O(δ f , ∂X ), where δ f (X, p) = f (X, p) − fl.eq(X, p) with fl.eq. given in
equation (6.16), and the gradient expansion and the expansion in δ f near a local equilibrium
are different, see the discussion in the next subsection and in [37]. For near-local equilibrium
configurations

δμcor(X ) = Tr
∫

d4 p

(2π)4
C(X, p)

A(X, p)

{
ln

1 ∓ f (X, p)

f (X, p)
,Re GR(X, p)

}
= O(δ f ∂Xδ f ).

Thus one may neglect the δμcor(X ) term, provided the system is very close to the local
equilibrium and gradients are small. Replacing in equation (6.84) the local equilibrium
distributions everywhere except C we obtain

δS0
KB(X ) = −Tr

∫
d4 p

(2π)4
Ml.eq.(X, p)

�l.eq.(X, p )

C(X, p)

Tl.eq.(X )
. (6.85)

This (the first order in δ f ) correction is zero in the local equilibrium, where Cl.eq. = 0, and is
sign-indefinite beyond the local equilibrium.

Counting the KB entropy flow from the BMM one, from equations (6.81), (6.82), (6.84)
and (6.36) we find

SμKBM(X ) = SμBMM(X )− Tr
∫

d4 p

(2π)4
Re GR(X, p) ln

1 ∓ f (X, p)

f (X, p)

∂

∂ pμ

[
C(X, p)

A(X, p)

]
, (6.86)

and finally

SμKB(X ) = SμBMM + Tr
∫

d4 p

(2π)4
C(X, p)

A(X, p)

∂ Re GR(X, p)

∂ pμ
ln

1 ∓ f (X, p)

f (X, p)
. (6.87)

Thus we obtain

SμKB(X ) = SμBMM(X )+ δSμKB(X ),

δSμKB(X ) =
∫

d4 p

(2π)4
C(X, p)δXμ(X, p) ln

1 ∓ f (X, p)

f (X, p)
, (6.88)

with δXμ(X, p) from (6.18). As we see, an additional purely non-equilibrium contribution
δSμKB(X ) is proportional to a weighted average space–time delay/advance. Expression (6.88)
up to first gradients also holds for the non-local form of the kinetic equation.
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Using (6.18) we obtain

δS0
KB(X ) =

∫
d4 p

(2π)4
C(X, p) δtkin

f (X, p) ln
1 ∓ f (X, p)

f (X, p)
(6.89)

that for configurations close to the local equilibrium produces an additional contribution to
the specific heat

δcKB(X ) = −
∫

d4 p

(2π)4
p0

Tl.eq(X )
C(X, p) (δtkin

f )l.eq +
∫

d4 p

(2π)4
p0C(X, p)

∂ (δtkin
f )l.eq

∂T
. (6.90)

The presence or absence of an additional non-equilibrium correction ∝ C to the specific heat
can be experimentally checked.

We can also find the entropy flow directly for the non-local form of the kinetic equation.
For that we multiply the non-local kinetic equation by ∓ln[(1 ∓ f shift)/ f shift] and perform 4-
momentum integration. From the left-hand side of the thus-obtained equation we find, instead
of equation (6.81),

SμNL(X ) = Tr
∫

d4 p

(2π)4

[(
vμ − ∂ Re�R(X, p)

∂ pμ

)
A(X, p) σ shift(X, p)

− Re GR(X, p)

(
∓ ln(1 ∓ f shift(X, p))

∂

∂ pμ
[�(X, p)(1 ∓ f (X, p))]

− ln f shift(X, p)
∂

∂ pμ
[�(X, p) f (X, p)]

)]
+ O

(
∂2

x

) = SμKB(X )+ O
(
∂2

x

)
, (6.91)

with

σ shift(X, p) = ∓(1 ∓ f (X, p)) ln(1 ∓ f shift(X, p))− f (X, p) ln f shift(X, p). (6.92)

Although formally equation (6.91) looks similar to the BMM term (6.81), the former
incorporates 4-space–time delays/advancements.

To get the full result one should still add to Sμ the first-gradient-order memory correction
Sμmem, which is non-zero, if the generating� functional contains diagrams with more than two
vertices, see equation (6.43). For example, in [35] it was shown that only with inclusion of the
memory term the value S0

BM = S0
BMM + S0

mem yields an appropriate thermodynamic expression
for the equilibrium entropy. Since in the local equilibrium δSμ = 0, the same relation holds in
the local equilibrium for S0

KB, i.e.(
S0

KB

)
l.eq = (S0

BM

)
l.eq = (S0

BMM

)
l.eq + (S0

mem

)
l.eq. (6.93)

H theorem and the minimum of the entropy production are discussed in appendix F.

6.9. Examples of the solutions of kinetic equations

Consider a small portion of light resonances placed either in the uniform equilibrium medium
consisting of heavy particles or in vacuum. To reduce the complexity of the problem we
will exploit the following ansatz: assume that only the distribution f depends on the Wigner
variables X = (t,�r), whereas the dependence of�R(t,�r) on X is weaker and can be neglected.

Then the kinetic equation in the non-local form (6.11) simplifies as

AμS (p)
∂

∂Xμ
f (X, p) = A(p) C

(
xμ − 1

2
Bμ(p)+ Z−1

μ (p)/�(p), pμ

)
. (6.94)
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The BM form of the kinetic equation (when Cshift is replaced by C) renders

AμS (p)
∂

∂Xμ
f (X, p) = A(p) �in(p)− A(p) �(p) f (X, p). (6.95)

The KB equation (when Cshift is expanded up to the first-gradient-order terms) reads

B̃μ(p)
∂

∂Xμ
f (X, p)+ f (p){�(p),Re GR(p)} − {�in(p),Re GR(p)} = A(p) �in(p)

− A(p) �(p) f (X, p). (6.96)

For uniformly distributed light resonances equation (6.94) still simplifies as

A0
S(p)

∂

∂t
f (t, p) = A(p) C

(
t − 1

2
B0(p)+ Z−1

0 (p)/�(p), p

)
. (6.97)

Equations (6.95) and (6.96) are simplified accordingly.

6.9.1. Uniformly distributed light resonances in equilibrium medium of heavy particles.
Consider the behavior of a dilute admixture of uniformly distributed light resonances in
equilibrium medium consisting of heavy-particles. Thereby, we assume that�R is determined
by the distribution of heavy particles, thus introducing ansatz �R � �R

eq. To further proceed
we need to make an additional assumption.

(i) Let us also assume that the gain term �in(p) � �in
eq(p) = feq(p)�eq(p); this means it is a

function of only equilibrium quantities. Then only the distribution of light resonances f
changes in time. According to equation (6.31):

C(p) � −A(p)�(p)δ f (t, p), δ f (t, p) = f (t, p)− feq(p).

Such an approximation (more accurately, an ansatz) is called a relaxation time
approximation and it is often used in Boltzmann kinetics without additional justification.
Replacing in the non-local kinetic equation (6.97)

δ fNL(t, p) = δ f (t = 0, p) e−α(p)t/δtB
s (p), (6.98)

(cf. equation (6.50)) for parameter α we find the equation

α(p) = eα(p)−α(p)tcol(p) /δtB
s (p), (6.99)

that yields α � 1 for δtB
s � tcol (then all three forms of kinetic equation coincide);

α � δtB
s

tcol
ln tcol
δtB

s
� 1 for δtB

s /tcol � 1. In the case δtB
s /tcol � 1 equation (6.99) has no

solutions. However, this case is not realized as it follows from explicit expressions for δtB
s

and tcol.
From the KB equation (6.96) we find solution

δ fKB(t, p) = δ f (t = 0, p) e−t/tcol(p). (6.100)

In contrast, solving the BM equation (6.95) we get a different solution:

δ fBM(t, p) = δ f (t = 0, p) e−t/δtB
s (p). (6.101)

These three solutions (6.98), (6.100) and (6.101) coincide only for |δtB
s (p) − tcol(p)| �

|δtB
s (p)|. However this condition may hold only in very specific situations. For example,

for Wigner resonances it holds only for |M − �/2| � �.
The mass-shell equation (6.35) produces another solution:

δ fMS(t, p) = δ f (t = 0, p) e−t/δtMS(p), δtMS(p) = 1

4 M(p)

∂�(p)

∂ p0
. (6.102)
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Concluding, within the relaxation time approximation we arrive at somewhat contradictory
results.

(ii) Using the BM replacement �in = � f in the commutator term in the KB equation and
in the mass-shell equation one proves that the latter two equations coincide with the BM
equation. However, as we see from the non-local kinetic equation the parameter δtf is not
small compared to δtB

s except for the case |M − �/2| � � (for Wigner resonances) that
again puts in question the correctness of the gradient expansion for t ∼ δtB

s .

6.9.2. Uniformly distributed resonances in vacuum. Now consider a spatially uniform dilute
gas of non-interacting resonances produced at t < 0 and placed in the vacuum at t = 0. Then
�R = �R(p) and following [39] we put �in(t > 0) = 0 (the production of new resonances
ceases). Using the latter ansatz we find

Cvac.r. = −A(p) �(p) f (t, p). (6.103)

From the BM equation we arrive at the distribution

fBM(t, p) = f (t = 0, p) e−t/δtB
s (p). (6.104)

However, the BM form of the kinetic equation does not hold for �in = 0, since its derivation
is based on the equation �in = � f .

To the contrary, from the KB equation we find another solution:

fKB(t, p) = f (t = 0, p) e−t/tcol(p). (6.105)

Similarly, the solution of the kinetic equation in the non-local form is the same as in
equation (6.98) with the replacement δ f → f . From the mass-shell equation (6.35) we
find solution (6.102), now for f instead of δ f . Thus we meet here with the same problems as
in the previous example.

6.9.3. Collision-less dynamics of propagating resonances. Let us find a class of spatially
inhomogeneous distributions of propagating virtual particles. We continue to assume that �R

does not depend on X . As an ansatz, let us use the BM replacement �in = � f both in the
commutator and in the collision terms in the KB equation. Since in the shifted variables
also �in

shift = �shift f shift, we obtain Cshift = 0. Thus in all three cases we now deal with
equation (6.94) with zero on the right-hand side (the so-called Vlasov case). The solution of
this equation is

f (X, p) = f0(t − �r�vgr/v
2
gr, p), (6.106)

for an arbitrary function f0(ξ , p) and �vgr being a function of p. Following equation (6.36),
δ�in = 0 and the mass-shell equation (6.35) is also fulfilled. Thus, in the given collision-less
case solution (6.106) fulfils the KB, BM, non-local form and the mass-shell equations.

In the specific case of the 1D propagation of a Gaussian distribution of off-shell particles,
one gets

f (t, z, p) = f0(p) exp[−(z − vgrt)
2(�z/vgr)

2], (6.107)

where f0 is an arbitrary function of p. The wave packet is propagating with the velocity vgr.
Particles are distributed in z near the maximum with the width δz ∼ vgr/�z, �z is the energy
width of the initial distribution.
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6.9.4. Collisional dynamics of propagating resonances. Let us continue to work with the
assumption that �R does not depend on X . The propagation of a resonance distribution in
vacuum is described by the KB equation (6.96) with C 
= 0. The solution of the equation is

f (X, p) = f0
(
t − �r �̃vgr/̃v

2
gr, p

)
e−t/tcol(p), (6.108)

where �̃vgr is a function of p and f0 is an arbitrary function f0(ξ , p). The solution can be also
presented as

f (X, p) = f̃0
(
t − �r �̃vgr/̃v

2
gr, p

)
exp

[
− t − �r �̃vgr/c2

tcol(p) (1 − ṽ2
gr/c

2)

]
, (6.109)

with another arbitrary function f̃0(ξ , p). The solution of the kinetic equation in the BM form
is obtained from (6.108), (6.109) with the help of the replacement tcol → δtB

s , ṽgr → vgr. Note
that the same solutions, for δ f instead of f , exist also in the case of the propagation of light
resonances in a medium consisting of heavy particles, provided we exploit the ansatz that has
been used above for the given case.

As follows from the solution (6.109), if ṽgr(p) > c and vgr(p) > c in some (p0, �p ) region,
there might occur an instability with respect to the growth of superluminal modes that may
result in some measurable effects, like a heating of the medium; cf. [122].

6.10. Validity of the gradient expansion

Many works, e.g., the recent review [21], use the BM form of the kinetic equation in practical
simulations of the dynamics of resonances in heavy-ion collisions, since it allows to apply
a simplifying test-particle method. Thereby, they assume that the appropriate time for a
relaxation of resonances is δtB

s rather than tcol. As we have demonstrated in examples, since
|δtf| ∼ v0/� � δtB

s , the gradient expansion may not hold on a typical time-scale tch � v0/�

in the above-considered problems at C 
= 0. Only if the typical time-scale of the problem
tch � v0/�, the solutions of all three (BM, KB and non-local) forms of the kinetic equation
and the mass-shell equation coincide.

Note that although the examples considered above show that the kinetic consideration
might be not applicable for a description of the system relaxation toward equilibrium at
t � δtB

s , tcol, provided one considers propagation of off-mass-shell particle distributions, the
quasiparticle limit proves to be the same for all three equations. More generally, the kinetic
approach holds at t � δtB

s , tcol at least for the wave packets with the energy integrated over a
region near the maximum of the distribution; see [126].

Another remark is in order. In spite of the formulated caution it might be practical to
use one of the above kinetic equations for actual calculations even beyond its validity region,
since all these kinetic equations reveal approximate or even exact (as for the KB form of the
kinetic equation) conservation laws of the 4-current and the energy–momentum [36, 37], thus,
reasonably approximating the system evolution.

6.11. Hydrodynamical and thermodynamical limits

The hydrodynamical limit [125] is realized for t � tcol, when the distribution f (X, p) obtains
the form of the local equilibrium distribution (6.16). The hydrodynamical equations are derived
from the conservation laws associated with the kinetic equation. The kinetic coefficients
entering hydrodynamical equations are derived from the BM equation (valid in this limit), see
[125]. They are expressed through the scattering delay time δtAS

s .
In the thermodynamical limit (global equilibrium, �u = 0,T, μ = const) all

thermodynamical quantities can be expressed solely in terms of the spectral functions of

98



J. Phys. G: Nucl. Part. Phys. 40 (2013) 113101 Topical Review

the species [132] and, thereby, they can be related to the above-introduced Wigner time δtA
W.

The memory term yields a contribution to thermodynamical entropy and specific heat and
might be associated with the memory time.

In general all species are described with the help of the dressed Green’s functions.
However, since there are relations between interaction and potential energies of the species,
the interaction part can be transported from some species to other ones. This procedure is
nevertheless ambiguous [132]. In order to demonstrate how the interaction can be transported
to one of the species consider the isospin-symmetric pion–nucleon–� isobar gas in the limit
of very low density at finite temperature [131]. It was assumed that pion and nucleon interact
only via excitation of the intermediate � resonances. In the virial limit the memory term
disappears. The thermodynamical potential becomes

	(T, μbar) = 3TV
∫

d3q

(2π)3
ln
[
1 − e−ωfree

π (�q)/T
]

− 4TV
∫

d3 p

(2π)3
ln
[
1 − e−(E free

N (�p)−μbar)/T
]

− 16TV
∫

d4 p

(2π)4
B�0 (p0, �p) ln

[
1 − e−(p0−μbar)/T

]
, (6.110)

where the first two terms correspond to ideal gases of pions and nucleons and the third
interaction term is expressed via the B�0 function of the � resonance, ωfree

π = √
m2
π + �q 2,

E free
N � mN + �p 2/(2mN ). The baryon density is split in the free nucleon and dressed �

contributions

nbar = nN + n� = − 1

V

(
∂	

∂μbar

)
T,V

,

nN = nfree
N = 4

∫
d3 p

(2π)3
1

e(E
free
N −μbar)/T + 1

,

n� = 16
∫

d4 p

(2π)4
B�0

e(p0−μbar )/T + 1
. (6.111)

By decomposing B�0 we may see that the first part of n� = nNoether
� is the proper contribution

of the � to the baryon density, and the second part proportional to ∂��
∂ p0

is the contribution
of πN intermediate states to the dressed �. Thus, the flow spectral function B�0 is related to
the density of the � states according to equations (6.59), (6.60). This result is in line with
the result (6.49) for the time shift of the �. Moreover in the example of a model with a finite
number of levels, [145] has demonstrated that expression (6.59) describes the level density in
the given interacting system.

In the limit nB → 0 one has B0 → Bfree
0 = v0 Afree. In this limit the spectral function

becomes the delta-function for stable particles but it remains a broad Lorentzian for ‘free’
resonances. The thermodynamics of free resonances was considered in [132]. Then all
thermodynamic quantities are obtained from the corresponding ideal gas expressions after
replacement of the element of the 3-phase-space d3 p

(2π)3 → d3 p
(2π)3

∫ dp0

2π v0 Afree(p0, �p ) and
thereby they are expressed in terms of the Wigner time delay δtfree

W = v0 Afree.

7. Space–time delays and measurements

7.1. The speed of the propagating wave packet

Consider the propagation of an initial distribution of off-mass-shell particles in a uniform
medium or in vacuum. For a particle off mass shell there is, in general, no upper limit to its
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speed. The distance of the order of the mean free path �z in the z direction is passed by the
maximum of the distribution at (Em, km) with the velocity

v shift
m = �z

�t
= �z ′ + δzf

�t ′ + δtkin
f

, (7.1)

where �z ′ and �t ′ would characterize two acts of the collision/measurement (on average)
without the variable shifts δzf and δtkin

f in the collision integral, equations (6.18), (6.49). Thus,
the arrival of the peak of the wave packet at point �z′ + δzf (not �z′) is delayed or advanced
by δtf. Under the assumption (done here for simplicity) that the variable shifts are small, the
change of the speed of the propagating peak is

δvm � vshift
m − vph = − B0

2�t ′
(vph − vgr)+

Z−1
0

��t ′
(vph − ṽgr), (7.2)

where vph = �z ′/�t ′. Although for �t ′ → ∞ the change of the velocity (7.2) becomes
negligibly small, it might be important for not-too-large values of the time intervals �t ′.
For the Wigner resonances vgr = ṽgr = vph and δvm = 0. Nevertheless, even in this
case the particles from the forward and backward tail of the distribution (for Em ± �E,
km ± �k) move between collisions with velocities slightly different from that of the peak,
δvtail ∼ ± ∂vgr

∂E �E ± ∂vgr

∂k �k ± vgr/(�z�t ′), where 1/�z is the width of the wave packet, see
equation (6.107). This causes a smearing of the wave packet.

If the distance of the free flight L is fixed by conditions of the measurement, then δzf

should be put to zero in equation (7.1), v shift
m = L

�t , and

δvm = −δtkin
f

vph

�t ′
=
(

− B0

2�t ′
+ Z−1

0

��t ′

)
vph, (7.3)

δvm > 0 for δtkin
f < 0.

7.2. Measurements and resulting time delays and advances

There are several sources of time delays and advances.

(i) Quantum mechanics, as well as quantum kinetics, says nothing about the motion of a
single identifiable particle. The distribution of quantum particles, which occurs in the
process of the smearing of wave packets during propagation, a scattering on a potential,
particle collisions etc, is not the same entity as the incident distribution. To be sure that
the particle beam propagating from z = 0 to z = L is described by a certain distribution,
e.g. by equation (6.107), one should measure a small fraction of it (not disturbing a bulk)
at (t = 0, z = 0) and then at (t = tL, z = L). After the measurement at (t = 0, z = 0),
particles disturbed by the measurement are effectively taken out of the distribution. Thus,
at (t = tL, z = L) we deal with other particles from the initial distribution which were
not tagged at (t = 0, z = 0). It could then happen that the first particles registered at
t = tL, z = L may additionally advance those particles, which are almost identical to the
particles registered at t = 0, z = 0, typically by a time step

δttail ∼ ±1/�z.

So, the typical time advance of the signal arriving at z = L is δttail. Certainly this time
advance can be diminished by performing precision measurements of the peaks of the
distribution at z = 0 and z = L but this procedure needs special care.

(ii) Another time delay/advance, ∼δtkin
f , arises as it is seen from the collision term in the

non-local form, that also manifests in the appearance of the Poisson-bracket fluctuation
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contributions in the KB equation (provided the kinetics is described by the KB equation or
by its non-local form). The result is given by equation (6.49). This time shift characterizes
(on average) the time delay/advance between two successive collisions.

(iii) Other time delay/advance is associated with the memory effects (yielding δtmem) appearing
in the processes of multiple interactions described by diagrams with more than two
vertices. However, the value δtmem diminishes in the case of a very dilute beam, since
diagrams with three and more vertices bring additional powers of density.
Summing up these three delay/advance times for the total time shift we finally obtain

δttot ∼ δttail + δtkin
f + δtmem. (7.4)

7.3. Apparent superluminality in neutrino experiments as a time advance effect

In September 2011 the OPERA experiment [41] (see version 1 of the e-print) claimed
measurement of muon neutrinos propagating with superluminal velocity, (v − c)/c =
[2.37 ± 0.32(stat)± 0.34(sys)] × 10−5, at average energies 〈E〉 = 17 GeV. This data agreed
with the data obtained earlier by the MINOS collaboration [42]: (v−c)/c = (5.1±2.9)×10−5,
E-peaking is at ∼3 GeV with a tail extending to 100 GeV, d = 734 km. An initial proton beam
in the OPERA experiment produces a bunch of pions. Neutrinos produced in the reactions
π → νμ̄ pass through the ground the distance L and reach a detector. As initially announced
by the OPERA collaboration, for the distance of L = 730 km ± 20 cm between the neutrino
source in CERN and the detector in Gran Sasso the neutrino beam has acquired a time
advance of tadv = 57.8 ± 7.8(stat)+ 8.3 − 5.9(sys) ns compared to that of neutrinos moving
with the speed of light. In February 2012 the OPERA collaboration has informed [146]11

that it has identified two possible effects that could have an influence on its neutrino timing
measurement. The first possible effect concerns an oscillator used to provide the time stamps
for a GPS synchronization. The second concerns an optical fiber connector that brings the
external GPS signal to the OPERA master clock. At the 25th International Conference on
Neutrino Physics and Astrophysics in Kyoto (8 June 2012), a final update on the OPERA
time-of-flight measurement was reported tadv = 1.6 ± 1.1(stat)+ 6.1 − 3.7(sys) ns.

Not entering into details of the given experiment and its deficiencies, we consider a
principle possibility to obtain a time advance of the order of ∼10 − 102 ns in the neutrino
experiments. Although many different possibilities were discussed in the literature, the
effects, which we will consider, were not mentioned. Simplifying, we assume that the initial
z = 0, t = 0 point is well-fixed with the help of heavy protons. The final point z = L, t = tL is
fixed by reactions of the neutrinos on the forward front of the propagating packet with nuclei
in the detector. We will argue that apparent superluminality can be associated with the effects
of the time advances considered in the given paper.

The maxima of the wave packets of protons and neutrinos produced in the two-step
process p → π+ + nnucl → nnucl + μ+ + νμ at CERN (nnucl is a neutron from a nucleus-
target) are separated by the time interval ∼1/�Nπ + 1/�πν , N = p here. Thereby a time
advance of the neutrinos arises owing to the advance of pions compared to protons and
neutrinos, δtνadv = δtNπ

adv + δtπνadv, where δtNπ
adv = −1/�Nπ and δtπνadv = −1/�πν . The value

δtπνadv = −1/�πν = −26 ns is due to the width �πν of the production of the neutrino in the
process π → νμ̄. The value δtNπ

adv ∼ −10−23 s is much shorter and can be neglected. The
origin of the resulting time advance δtνadv arising in this process was illustrated by figure 15. So
we believe that the width �z ∼ �πν in the initial neutrino wave packet may yield δttail ∼ δtπνadv
(−26 ns) of advance, see point (i) of section 7.2.

11 From the CERN director Rolf Heuer, rolf.heuer@cern.ch, 23 February 2012.
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Another contribution to the time advance δtkin,ν
f ∼ −1/�πν (−26 ns) arises if the

virtual pion propagation is described by the KB kinetic equation or by its non-local form
for |Mπ | � �πν/2, as it follows from equation (6.49), see point (ii) of section 7.2.

Summing up two possible time advances, for the ‘most rapid’ particles we find
δtν = δtνadv + δtνf ∼ −2/�πν = −52 ns. This agrees well with the primary announced
result of the OPERA experiment.

Note that, provided neutrino flux in the ground corresponds to off-shell neutrinos, see
equation (7.3), an additional time advance could occur. But this effect resulting in δvgr ∝ G2

W,
where GW is the coupling constant of the weak interaction, is very small, since c/�πν � L.
Thus, most likely neutrinos produced at CERN undergo almost free flight to the detector in
Gran Sasso. Likely, the smearing effect of the wave packet is also tiny for the conditions under
consideration.

Summarizing, one may expect few of δtπνadv, as typical time advances in the neutrino
experiments like those performed by the OPERA and MINOS. If our interpretation is correct,
a time advance, which could possibly be measured in neutrino experiments, like the OPERA
experiment, should not significantly depend on the distance L between the source and the
detector; however, its value is very sensitive to the conditions by which the initial and final
time moments are fixed in the measurements. From the description of the mentioned OPERA
experiment it is not sufficiently clear how this fixation was performed.

8. Conclusion

The aim of the present review is to give a coherent overview of how various measures used to
quantify the durations of processes in classical and quantum physics appear and to explicate
their interlinking.

8.1. Classical mechanics

For time measurements in classical mechanics, besides ordinary time characteristics, such
as the oscillation period P, the phase time shift δtph = �δ/E (here E denotes the particle
energy and �δ = Ssh stands for the mechanical shortened action) and the decay time tdec, we
introduced other quantities such as the dwell time td, the sojourn time tsoj and the group delay
t1D
gr = ∂�δ/∂E. We discussed the relations between these times. For example, we demonstrated

that the classical sojourn time delay is negative in the case of attractive 1D potentials and
positive for repulsive 1D potentials. In the 3D case the situation is more involved. For the
spherically symmetric potential there is no direct correspondence between the sign of the
potential and the sign of the classical sojourn time delay. Also for the radial motion there
appears an extra factor of two in the classical group time delay compared to the 1D case,
because the coordinate integration is restricted by r > 0 in the former case, and goes from
−∞ to ∞ in the latter case, t3D

gr = δtW = 2∂�δ/∂E. Namely, the latter quantity was originally
introduced by Wigner and Eisenbud for quantum scattering [1].

Then we studied examples demonstrating time advances and delays of a damped
oscillator z(t) under the action of different external forces F(t). We applied the Green’s
function formalism exploiting extensively quantum field theory and quantum kinetics. To
establish a closer link to the formalism of the quantum field theory, we introduced the
dynamical variable—a ‘field’—φ(t) = m z(t). The source term in the Lagrange equation
depends nonlinearly on φ and linearly on the external force. The formalism allows a natural
diagrammatic interpretation of the solution of the Lagrange equation.
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First, we considered the response of the damped harmonic oscillator with the resonance
frequency ER and of the damping width � to a sudden change of an external constant force.
The response is purely causal in this case. The larger is the damping width � of the oscillator,
respectively the shorter is the damping time tdec = 1/� and the longer is the phase time δtph,
showing the time shift of the oscillations. For � → 2ER the oscillation frequency vanishes,
P → ∞, and the phase shift δtph becomes infinite, but the ratio δtph/P remains finite,
δtph/P → 1/4.

Then we demonstrated that in the case of an external force acting over a finite time interval,
the damped harmonic oscillator can exhibit an apparently acausal reaction: the maximum of
the oscillator response may occur before the maximum of the external force. Thus, if for the
identification of a signal we used a detector with the threshold close to the pulse peak, such a
detector would register a peak of the response of the system before the input’s peak.

Next we considered a possibility of an advanced response also on the example of a periodic
driving force with a constant frequency acting on a damped nonlinear oscillator. In the linear
approximation with respect to the anharmonicity parameter, there appears an overtone peaked
at frequency ER/2. Thus, there arises an extra phase time-scale characterizing the dynamics
of the overtone. When the frequency of the force is Ep ∼ 1

2 ER, the overtone can produce an
additional maximum in z(t), which would appear, as occurring before the actual action of the
force. The system would seem to ‘react’ in advance.

In the case when the external force acting on a damped anharmonic oscillator with the
resonance frequency ER is a packet of modes grouped near frequency Ep with the width ∼ γ ,
the typical time for which the envelope function fades away is tγ ,(cl)

dec = 1/γ for γ � �. In
a linear approximation in anharmonicity parameter there appear two resonance group time
delays, t (1)gr = A1/2 = �/2

(Ep−ER )2+�2/4 and t (2)gr = A2/2 = �/4
(Ep−ER/2)2+(�/2)2/4 one peaked at

ER, and another one, at ER/2. These group time delays appear because the system responds
slightly differently to various frequency modes contained in the force envelope. Oscillations
of the carrier wave are delayed by the phase times, whereas the amplitude modulation is
delayed by the group times. We introduced a new quantity—the forward time delay/advance,
δtγf = tgr − tγ ,(cl)

dec —which takes into account that the delays of the wave groups are starting to
accumulate before the external force reaches its maximum with an advance determined by the
width of the force packet. When the external force frequency Ep is near the oscillator resonance
frequency ER the forward time is positive, which corresponds to a delayed response, but in
the off-resonance region the forward time changes its sign, that corresponds to an advanced
response. In the limit γ → 0 we arrive at the case of a purely periodic force. An interesting
effect is that the frequency of the carrier wave is changed and becomes time dependent. When
Ep approaches ER not only the amplitude of the system response grows but also the response
lasts much longer than the force acts. Thereby we demonstrate the effect of a smearing of the
wave packet in classical mechanics.

Further on, time shifts appearing in the 3D classical scattering problem were considered
in the example of the particle scattering on hard spheres of radius R. We derived the limits
on the values of time advances: the sojourn time advance, being equal to the Wigner time
advance, is limited by δtW = 2 ∂�δ

∂E > −2R/v, where v is the particle velocity. We introduced
another relevant quantity, the scattering time delay: the difference in time when the particle
touches the sphere surface and the time when the particle freely reaches the center of the
sphere. This time characterizing delay of scattered waves is half the size of the Wigner time
delay.

Next, we discussed time delays appearing in classical electrodynamics. More specifically,
we studied the problem of the radiation of a damped charged oscillator induced by an external
electromagnetic plane wave. We introduced the scattering amplitude, the cross-section and

103



J. Phys. G: Nucl. Part. Phys. 40 (2013) 113101 Topical Review

related them to the phase shift. As the cross-section, the scattering group time delay has
a resonance shape. The damping is determined by the sum of the oscillator and radiation
damping widths. The scattering group time delay (the scattering delay time) is half the size as
the Wigner delay time.

For the scattering of light on a hard sphere of radius R, we show that the appearance of a
temporal advance in the signal propagation does not contradict causality.

8.2. Quantum mechanics

We studied time shifts arising in different quantum mechanical problems. More specifically
we considered 1D tunneling and 3D quantum scattering of non-relativistic particles.

8.2.1. One-dimensional quantum mechanical motion. To be specific we assumed that the
potential U > 0 acts within a finite segment −L/2 � z � L/2. For the particle motion above
the barrier (E > U) both the dwell time and the traversal time ttrav are relevant quantities
depending on the distance passed by the particle. High above the barrier they are reduced to
the free flight time L/v. However at energies below the barrier the traversal time becomes
imaginary. For the rectangular barrier the dwell time is always smaller than the classical
traversal time for energies of the scattered particle E < U for a broad barrier and for E < 3

4U
for a thin barrier. For the case of the tunneling through a very broad barrier of an arbitrary
form the dwell time in the region under the barrier is determined by the evanescent wave and
describes, thereby, neither particle transmission nor the dwell of transmitted waves. In this
particular case the dwell time is determined by the quantum time-scale, which is shorter than
the classical traversal time of the same region would be.

Then we considered propagation of wave packets. For a free moving packet we recover the
well-known result that the width of packet increases with time. For a typical time of smearing
of the packet we get tsm ∼ �m/γ 2

p , where γp is the width of the packet momentum distribution.
Then we consider scattering of wave packets with negligibly small momentum uncertainty.
According to the method of the stationary phase, the position of the maximum of an oscillatory
integral is determined by the stationarity of the complex phase of the integrand. Eisenbud and
Wigner used this method to introduce two measures of time that could characterize the wave
propagation within the potential region: the difference of time when the maximum of the
incident packet is at the coordinate z = −L/2 and the time when the maximum of the
transmitted packet is at z = +L/2, and the difference of the time when the maximum of
the incident packet and the maximum of the reflected packet are at the same spatial point
z = −L/2. We call these time intervals the transmission and reflection group time delays,
tT and tR. Moreover one introduces the bidirectional scattering group time tbs composed of
the transmitted and reflected group times weighted with probabilities of the transmission and
the reflection. We argue that in the case of tunneling the group times show time delays on
the edges of the barrier on the scale of quantum length near the turning points. In case of the
broad barrier the bidirectional group time delay is mainly determined by the reflection group
time delay. The difference between the bidirectional scattering time delay and the dwell time
is now a time delay/advance due to the interference of waves δti. This interference time term is
absent in the case of classical motion. The interference time proves to be negative (advance) for
under-the-barrier motion. Within the semiclassical approach for the tunneling the bidirectional
scattering time equals zero. The difference with the exact result is due to the fact that in the
region near the turning points, where the group time delays are accumulated, the semiclassical
approximation is not applicable. For the scattering of an arbitrary wave packet the sojourn time
appears as the dwell time averaged over the momentum distribution in the packet. Therefore,

104



J. Phys. G: Nucl. Part. Phys. 40 (2013) 113101 Topical Review

from the definition of the sojourn time one extracts basically the same information as from
the definition of the dwell time. For the particle motion well above the barrier the dwell and
the group times are reduced to the appropriate traversal time proportional to the length of the
distance passed by the particle, and the interference time vanishes.

The phenomenon that for a very broad barrier the dwell and the group times are reduced
to the quantum time not proportional to the barrier length is known as the Hartmann effect.
We clarified the reasons for the appearance of the Hartmann effect and formulated arguments
why the group times and the dwell time are not appropriate quantities to measure the tunneling
time.

Operating with the group times, and then related to them dwell time, one assumes that the
position of a particle can be identified with the position of the maximum of the wave packet.
However, it is not so easy to experimentally distinguish the peak position of a spatially broad
packet. Then, to specify the position of the particle we studied the motion of the centroids
(centers of mass) of the incident, transmitted and reflected wave packets. We showed that the
barrier acts as a filter letting with higher probability penetration for the modes with higher
energies. As the result, all three packets move with different velocities at large distances from
the potential region. Also the widths of transmitted and reflected packets differ from the width
of the incident packet. We demonstrated that in the case of γpL � � the centroid transmission
and the reflection time delays are mainly determined by the wave packet formation times tform,T,
tform,R. These quantities show averaged passage times by particles of the typical spatial packet
length �/γp. The term ∝ Lγp entering the expression for tform,T but not entering tform,R � tform,I

corresponds to an advance, since the transmitted wave packet moves with a higher velocity
compared to the reflected and incident wave packets. Dependence on L may indicate that the
passage time of the barrier might be proportional to its length.

More complete information about the temporal behavior of the packets can be extracted
from the explicit forms of the spatial distributions. To elucidate these aspects further, we
have considered explicitly a Gaussian wave packet tunneling through a barrier. We found that
because of the smearing effect the longer is the barrier, the broader is the transmitted wave
packet being formed for z � L/2 with a delay depending on the length scale. In further study,
considering the propagation of waves on time-scales shorter than tsm we neglected the effects
of smearing. The probability (on the right wing of the packet) to meet the particle at z = L/2
becomes the same, as it were in the case of the monochromatic wave with E = Ep (the
stationary problem), at the time moment when the maximum of the incident wave packet did
not yet reach the barrier and the maximum of the transmitted wave packet did not yet emerge
at z = L/2. For a very broad rectangular barrier of the height U placed at −L/2 � z � L/2, the
peak of the transmitted wave packet is formed at the right border of the barrier, after a quantum
time delay (not dependent on the barrier depth) from the moment when the peak of the incident
wave packet reaches the left border of the barrier (the Hartmann effect). The probability to
meet the particle at z = L/2 again (now on the left wing of the packet) becomes the same,
as it were in the case of the monochromatic wave with the energy Ep, when the maximum of
the transmitted wave packet achieves the point z � L/2 + Lvm/� + �p(p−2 − �−2

p ), where
�p =

√
2mU − p2/�, the traversal time t tun

trav = Lm/� is much larger than the (third) quantum
time term. Thus, we are able to associate the time t tun

trav with the passage time of the barrier
for waves with E � Ep. Thereby, we believe that this observation can be interpreted, as a
resolution of the Hartmann paradox.

Since the packet has a width, the probability to find the particle at a given point becomes
essentially non-zero already before the center of the packet with the energy dispersion γ has
reached it, with an advance tγdec = �/γ . In accord with the Mandelstam–Tamm uncertainty
relation it has the meaning of the time during which the wave packet passes a given
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space point. Thus, the real (forward) delay/advance time at z = L/2 is not tbs but
δt tun

f = tbs − tγdec.
Next, we studied resonance states and their time evolution. We considered a scattering

on the potential well of the length lR (a resonator) with an infinite wall at the origin
separated from the region z > l by the rectangular barrier of the height U and thickness
l − lR. The scattering amplitude is shown to possess simple poles for complex energies
E = ER,i − i�i/2, i = 1, . . . , n. The calculated dwell and reflected group time exhibit strong
resonance enhancement for energies E ∼ ER,i. Hence, the incident packet spends in the
interaction region much longer time than the typical passage time of this region by a particle
with the mean velocity of the packet. For energies tuned from ER,i by more than the resonance
width the internal part of the potential becomes inaccessible to the incident wave. In view
of the symmetry of the problem it is possible to introduce the single-way dwell time and the
scattering time, which can be related to the number of resonance states per unit energy and
are equal ts.w.

d (0, l) � ts = �A/2 = ��/2
(E−ER )2+�2/4 . The sum-rule for the scattering time delay is

preserved. We constructed the set of the eigenfunctions for the given scattering problem and
used them in the analysis of the evolution of some initially localized state. The properties of the
survival probability for this state are discussed. The relations between the survival probability
and the retarded Green’s function are obtained. It is shown that the decay time tdec = �/� of the
resonance state can be calculated as the sojourn time of the wave function within the interval
(0, l). The forward scattering time δtf = ts − tdec is shown to correspond to some delay in the
scattering of particles with energies nearby the energy of the quasi-stationary level and to an
advance for |E − ER| > �/2. The causality restriction becomes δts = ∂�δ

∂E > −l/v − �/2kv.
The term �/2kv is of purely quantum origin. It shows the time, which the particle needs
in order to pass half of the de Broglie wavelength of the particle, λ = �/k. Following the
uncertainty principle free quantum particles cannot distinguish distance ξ < �/2k.

8.2.2. The three-dimensional scattering problem. We considered the 3D scattering problem
on a central potential and discussed the difference compared with 1D-scattering. We introduced
the sojourn time δtN

vol = δtN
s − δtN

i and the corresponding scattering and interference times,
all normalized by the incident flux. The Wigner group time delay δtW = δtN

vol = 2 ∂�δ
l

∂Ep

appears as the group time delay of the divergent wave taking into account interference with
the incident plane wave, δl is the phase shift of the radial wave function. The scattering group
time ts = tfree + δts is normalized by the scattered flux. The scattering group time delay
δts = δtW/2 appears as the delay of the purely scattered wave. The decay time appears as
tdec = δtN

vol/4 sin2 δl .
Then we studied scattering on a Wigner resonance with a constant width �. The

probability for a particle to enter the region of the resonance interaction can be written
as P� = sin2 δ = �2/4

M2+�2/4 = A�/4, where M = E − ER. The cross-section of the
resonance scattering can be presented as σ � 4πλ2P� with λ = �/k standing for the de
Broglie wavelength. For M = 0 (i.e. exactly at the resonance) the cross-section reaches its
maximum σmax = 4πλ2. The scattering time delay coincides with the single-way dwell time
δts = �

∂δ
∂E = ts.w.

d = �A/2. The forward time delay coincides with the interference time. The
forward time delay δtf = δti = �A/2−tdec = tdec (sin2 δ−cos2 δ) is the time delay of the decay
because of the difference in the probability for the particle to enter the region of the resonance
interaction (sin2 δ) and not to enter this region (cos2 δ). The forward delay/advance time, δtf,
is then an average delay/advance in the scattering counted from the decay time tdec. Explicitly,
for the Wigner resonances we derive expression δtf = −�

M2−�2/4
�(M2+�2/4) . Thus δtf corresponds to

a delay for |M| < �/2 and to an advance for |M| > �/2.
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We discussed quantum mechanical scattering on hard spheres of radius R. For l = 0 we
find δt0

s = �
∂δ0

∂Ek
= −R/v. The same advance, δtl

s = −R/v, arises for rapid particles kR/� � l2

at angular momenta l 
= 0. For slow particles, kR/� � l1/2, δtl
s ∝ (kR/�)2lR/v. When the de

Broglie wavelength λ = �/k � R the propagating wave almost does not feel the presence of
the sphere. Thus, for l � 1 the cross-section becomes negligibly small.

Then, using a semiclassical expression for the phase shift we considered the similarity
and difference between semiclassical and classical expressions for the time delays. Also,
we discussed ergodicity and related the scattering time shifts to the level density. The
Wigner delay can be interpreted as a time delay in an elementary phase-space cell:
δtW = 2δts = 2π� dN level/dEp. Examples of the resonance scattering and scattering on
hard spheres were considered.

8.3. Quantum field theory

We considered time shifts as they appear in quantum field theory. Knowing the Lagrangian
one constructs the generating functional on the Schwinger–Keldysh contour [34]. Varying this
functional one reproduces the equation of motion for the mean field and four Dyson equations
for the non-equilibrium Green’s functions Gi j, i, j = {+,−}. These Green’s functions can
be expressed in terms of Feynman diagrams only, if the typical times in the problem are
longer than the typical time-scale of the interaction tint (the principle of weakening of initial
correlations) and the typical spatial scale is longer than the interaction scale lint. Further we
assume that these conditions are fulfilled. Dropping short-range correlations at each time step
causes a growth of the entropy with time, which is associated with the thus obtained Dyson
equations. The scattering time delay is expressed in terms of the Wigner-transformed imaginary
part of the retarded Green’s function A = −2 Im GR(X, p) and the decay time, in terms of
the Wigner-transformed imaginary part of the retarded self-energy, � = −2 Im�R(X, p). The
self-energy is defined here as�R = G−1

0 − [GR]−1, where G0 is the free Green’s function. The
equilibrium particle occupations (in the Boltzmann limit) relate to a delay of the scattering
time and an advance of the collision time.

We discussed typical duration times for the reactions, which occur via intermediate states.
We showed that the reaction times may cause an advance for some processes. Integration
over 4-coordinates in intermediate reaction states of Feynman diagrams, runs over all times,
−∞ < tz <∞ for any point z corresponding to an intermediate reaction state. For ty < tz < tx,
where x and y are external space–time points and tx < ty, the process which occurs at tz
is delayed compared to that which occurs at ty, and for tz < ty < tx the process which
occurs at tz is advanced compared to that which occurs at ty. Both time processes must be
incorporated, as dictated by the Lorentz invariance. A typical time-scale of the integration
over tz is v0�/�, where � is the typical width of the process under consideration and
v0 = ∂G−1

0 /∂ p0. In other words, v0�/� is the typical time required for the formation of
the wave packets of the resulting particles. For instance, if there occurs a two-step process,
e.g. p → n + X + π+

virt → n + X + νμ + μ+, its duration is characterized by the time
tdec
ν = tdec

Nπ + tdec
πν . Here tdec

Nπ = �/�Nπ is the life-time of the virtual pion produced in the
process p → n + X + π+

virt and tdec
πν = �/�πν is the life-time of the virtual pion produced in

the process π+
virt → νμ + μ+. This means that virtual pions, being produced in the process

p → n+X+π+
virt, in the subsequent processπ+

virt → νμ+μ+ undergo time delays and advances
on a time-scale −tdec

πν � t2 − t1 � tdec
πν , where t2 characterizes the act of the production of ν

and t1, of the absorption of p.
Also, we showed how the sojourn time can be expressed in terms of the non-equilibrium

Green’s function.
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8.4. Quantum kinetics

Assuming that time–space scales characterizing the dynamics of collective modes are larger
than microscopic time–space scales one exploits the Wigner transformation for the Green’s
functions (the Fourier transformation in ξ = (t1 − t2,�r1 − �r2)). Within the first-order space–
time gradient approximation over 1

2 (t1 + t2,�r1 + �r2) one derives dynamical equations for the
four Green’s functions. It is important to notice that although we derived four Dyson equations
for four complex Green’s functions, only two real quantities are independent. As independent
real variables it is convenient to use the spectral function A(X, p) = −2 Im GR(X, p) and the
iG−+(X, p) Green’s function (the Wigner density). It proves to be that the retarded Green’s
function satisfies the algebraic equation (up to second-order space–time gradients) and iG−+

Green’s function fulfils the first-order gradient generalized kinetic equation. The other (mass-
shell) equation, describing propagation of the off-mass-shell particles on equal footing with the
generalized kinetic equation, should coincide with the generalized kinetic equation provided
all approximations are done consistently.

We demonstrated that the generalized kinetic equation can be presented in three forms, the
proper Kadanoff–Baym (KB) form, the Botermans–Malfliet (BM) form and the non-local form.
The BM form follows from the KB form provided space–time gradients are small and moreover
the system is close to the local equilibrium. The non-local form differs from the KB one only
in the second-order gradient terms in the expansion of the collision term and it coincides
with the BM form, if one retains only zero-gradient terms in the gradient expansion of the
collision term. In the collision term of the non-local kinetic equation there arise 4-coordinate-
momentum shifts in space–time variables. They appeared due to the Poisson-bracket term that
differs the KB form of the kinetic equation from the BM one. We discussed the meaning of the
BM effective current, the Noether and the effective B-current and the memory current. Then
we analyzed delays and advances, as they appear in the non-local form of the kinetic equation
for off-mass-shell particles. There appear several time delays: the Wigner, scattering, collision,
forward, memory, Noether, drag-flow and back-flow delays. Thus, the physical meaning of
the Poisson-bracket term in the KB equation is fully clarified. The forward time delay appears
as the time shift in the collision term: δtkin

f = δtB
s − tcol, where the kinetic scattering time

delay is δtB
s = �B0/2 and the collision delay is tcol = �Z−1

0 /�, B0 = A(Z−1
0 − M�−1 ∂�

∂E ), and
for non-relativistic particles M = E − p2/2m + Re�R, Z−1

0 = 1 − ∂ Re�R

∂E . In the absence of
the energy retardations in the response of the medium (Wigner resonances) the kinetic times
δtB

s , tcol and δtkin
f appropriately transform into the similar quantities introduced in quantum

mechanical scattering on potentials and in the case of resonance scattering.
Moreover we related time delays to the density of energy states with and without

interaction terms. In the low density limit the time-shift which appears in the non-local
collision term is just the forward time delay/advance discussed above for classical and quantum
mechanical motions. Then we discussed application of the test-particle method to solve the BM
and non-local kinetic equations. The analysis of the test-particle trajectories also sheds light
on the meaning of the space–time shifts. We showed then how the appropriate quasiparticle
limit can be recovered. A superluminality problem is briefly discussed. Apparent superluminal
propagation has been indeed manifested in some laser experiments. This phenomenon can be
understood as the consequence of a reshaping of the pulse envelope by interaction within
the medium. Although formally the group velocity may in some cases exceed c, the forward
wavefront moves with velocity � c.

Next, we calculated entropy flow for the non-local form of the kinetic equation and
compared it with the flows for the BM and the KB forms of the kinetic equation. We related
the forward time delay to the difference in the expressions for the KB and the BM kinetic
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entropies. Note that, in principle, the presence or absence of an additional non-equilibrium
correction to the specific heat proportional to the collision term can be experimentally
verified.

Then choosing some reduction ansatz for the initial non-equilibrium configurations we
found specific solutions of the kinetic equations in the BM, KB and non-local forms and
solutions of the mass-shell equation, which, in general, differ from each other and coincide
only, if the typical time-scale characterizing the system dynamics is larger than the forward
time delay/advance. The latter is typically of the order of the collision time. Thus, we uncover
some problems with simulations of heavy-ion collisions using the test-particle method, if one
deals with the kinetic equation in the BM form for typical time of the order of the mentioned
time-scales. In specific energy–momentum regions (e.g. for small � and larger |M|) the typical
scattering time, which characterizes the evolution of the BM equation, δtB

s ∼ �v0A/2, can
be much shorter than tcol ∼ �v0/� characterizing evolution of the KB equation. In spite of
the mentioned problems it might be practical to use one of the above kinetic equations for
actual calculations even beyond its validity region, since all these kinetic equations reveal
approximate or even exact (as the KB form of the kinetic equation) conservation laws of
the 4-current and the energy–momentum tensor, thus approximating reasonably the system
evolution. The hydrodynamical limit is realized for t � tcol, when particle distributions acquire
the form of the local-equilibrium distribution. For such a distribution the collision term turns
to zero. The hydrodynamical equations are derived from the conservation laws associated with
the kinetic equation. The kinetic coefficients entering hydrodynamical equations are derived
from the BM equation (valid in this limit). They can be expressed through the scattering
time delay δtB

s . We also demonstrated the possibility of the appearance of an instability for
superluminal off-mass-shell particles.

Finally we presented a possible interpretation of the apparent superluminality, which may
manifest in experiments, like the OPERA and MINOS neutrino experiments, and in similar
experiments expected to be settled in nearest future. The maxima of the wave packets of
protons and neutrinos produced in the two-step process p → π+ + nnucl → nnucl + μ+ + νμ
at CERN (here nnucl is a neutron from a target nucleus) are separated by the time interval
∼�/�pπ + �/�πν . Thereby a time advance of the neutrinos may arise owing to an advance
of pions compared to protons and neutrinos, δtνadv = δtNπ

adv + δtπνadv, where δtNπ
adv = −�/�Nπ

and δtπνadv = −�/�πν . The value δtπνadv ∼ −�/�πν = −26 ns is due to the width �πν of the
production of the neutrino in the process π+ → νμ + μ+. Thus, one may expect a few δtπνadv,
as a typical time advance in the neutrino experiments like those performed by the OPERA and
MINOS.

Some details of calculations and helpful relations are deferred to appendices A–E. In
appendix F we discuss H theorem for three forms of the generalized kinetic equation and
argue for the minimum of the entropy production related to the generalized kinetic equation.

Concluding, we discussed the similarities between the description of time delays and
advances for various systems, like classical oscillating systems, 1D quantum mechanical
tunneling, the decay of quasi-stationary states, 3D scattering, reactions and quantum kinetical
processes.
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Appendix A. Virial theorem for infinite classical motion in a central potential

Here we give a short recount of the derivation of the virial theorem (2.17) by Demkov in [44].
The derivation is based on the suggestion of Fock [147] to combine the variational principle
of mechanics and the scale transformation of coordinates.

Consider a particle of mass m moving in a central field U (r) diminishing sufficiently
rapidly for r → ∞. The equation of motion of the particle between times t1 and t2 follows
from the requirement of the vanishing of the action variation around the true trajectory

δS =
∫ t2

t1

δL(�r,�v) dt (A.1)

with the Lagrange function L = 1
2 m v2 − U (r).

Consider now a particular variation around the trajectory, δ�r = ε�r(t), with an
infinitesimally small parameter ε. The variation of the action is now not zero, since the
variation δ�r does not vanish at the ends of the time interval and is given by δS =
ε
(
∂L(t2 )
∂�v

�r(t2)− ∂L(t1 )
∂�v

�r(t1)
)
. On the other hand we can calculate δS by expanding the Lagrange

function in (A.1) directly. Equating terms linear in ε in both expressions, we obtain

δS = ε
∫ t2

t1

(
∂L

∂�r
�r + ∂L

∂�v
�v

)
dt = ε

(
∂L(t2)

∂�v
�r(t2)− ∂L(t1)

∂�v
�r(t1)

)
, (A.2)

and, substituting the Lagrange function, arrive at∫ t2

t1

(
mv2(t)− r(t)

dU (r(t))

dr

)
dt = m(�v(t2)�r(t2)− �v(t1)�r(t1)). (A.3)

For t1 → ±∞ the particle speed is v∞. Let us assign the time t = 0 to the position of the
closest approach of the particle to the center r = r0. Then for large times (either positive or
negative) the distance from the origin is given by r = s + v∞ |t|, where s is the difference
of the distance that the particle, moving in the potential, passed from the moment t = 0 to t
and the distance it would pass during the same time interval if it moved freely (for U = 0)
with the velocity v∞. The scattering time delay/advance of the particle in the potential can be
defined as

δtcl
s = −s/v∞. (A.4)

Since both sides of equation (A.3) diverge in the limit t1 → ±∞, we regularize them by
subtracting v2

∞ (t2 − t1). Then on the left-hand side we can use the energy conservation
m (v2 − v2

∞) = −2U and on the right-hand side we get 2 m v∞ limt→∞(r − v∞ t) = 2m v∞s.
We take here into account that at large distances from the center �v ↑↓ �r before collision
(t1 → −∞) and �v ↑↑ �r after collision (t2 → +∞). Thus we rewrite equation (A.3) as∫ +∞

−∞

(
2U (r(t))+ r(t)

dU (r(t))

dr

)
dt = −2mv∞s = 2mv2

∞δt
cl
s (A.5)

and introducing the Wigner time delay δtcl
W = 2δtcl

s we recover equation (2.17).
Another derivation of this relation from the point of view of hypervirial theorems,

introduced by Hirschfelder for classical and quantum systems in [148], can be found
in [149].

110



J. Phys. G: Nucl. Part. Phys. 40 (2013) 113101 Topical Review

Appendix B. Relations for wave functions obeying the Schrödinger equation

Consider two solutions of the Schrödinger equation with a potential U (x) and slightly different
energies E and E ′:

− �
2

2 m

∂2

∂z2
ψ(z,E )+ U (z) ψ(z,E ) = E ψ(z,E ),

− �
2

2 m

∂2

∂z2
ψ∗(z,E ′)+ U (z) ψ∗(z,E ′) = E ′∗ ψ∗(z,E ′). (B.1)

For the sake of generality we assume that the energy might be complex. Let us multiply the
first equation by ψ∗(z,E ′) and the second one by ψ(z,E ), subtract one from another and
integrate from a to b. Then we put E ′ → E. In this limit Re(E ′∗ − E ) = δE → 0 and
Im(E ′∗ − E ) → −2 Im E. Keeping only the leading terms in δE and Im E on the right-hand
side we obtain∫ b

a
dz
[
E ′∗ ψ(z,E )ψ∗(z,E ′)− E ψ∗(z,E ′)ψ(z,E )

] ≈ (δE − 2 i Im E )
∫ b

a
dz|ψ(z,E )|2.

(B.2)

On the left-hand side
�

2

2 m

∫ b

a
dz

[
ψ∗(z,E ′)

∂2

∂z2
ψ(z,E )− ψ(z,E ) ∂

2

∂z2
ψ∗(z,E ′)

]
≈ i �

(
j(b; E )− j(a; E )

)
+ δE �

2

2 m

[(
∂

∂E
ψ∗(z,E )

)
∂

∂z
ψ(z,E )− ψ(z,E ) ∂

∂z

(
∂

∂E
ψ∗(z,E )

)] ∣∣∣∣∣
b

a

,

(B.3)

where the currents at coordinates a and b are determined according to equation (3.3),
j(z; E ) = J [ψ(z; E )]. Equating real and imaginary parts of equations (B.2) and (B.3) we
arrive at the relations∫ b

a
dz |ψ(z,E )|2 = �

2

2 m

[(
∂

∂E
ψ∗(z,E )

)
∂

∂z
ψ(z,E )− ψ(z,E ) ∂

∂z

(
∂

∂E
ψ∗(z,E )

)] ∣∣∣∣∣
b

a

,

(B.4)

and

−2 Im E = �
(

j(b; E )− j(a; E )
)/∫ b

a
dz |ψ(z,E )|2. (B.5)

The first relation is used to get equation (3.13). The last relation demonstrates the equivalence
between the current conservation and the vanishing of the imaginary part of the energy. If the
current is not conserved, j(a; E ) 
= j(b; E ), we are dealing with an exponentially increasing
(Im E > 0) or decreasing (Im E < 0) wave function in the interval [a, b]. For a bound state the
wave function can always be chosen real and therefore both j(a; E ) and j(b; E ) vanish and
Im E = 0. In the scattering problem (e.g., as given by equations (3.1) and (3.1)) the currents
are independent of the coordinate and j(a; E ) = j(b; E ) thus yielding Im E = 0. Only the
wave functions satisfying the boundary conditions

(a)ψ(z; E )→ e+i|z|√2mE , z → ±∞,
(b)ψ(z; E )→ e−i|z|√2mE , z → ±∞,
(c)ψ(z; E )→ e±iz

√
2mE , z → ∞;ψ(z; E ) = 0, z < a,

(d)ψ(z; E )→ e∓iz
√

2mE , z → −∞;ψ(z; E ) = 0, z > b (B.6)
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describe states with complex energies. The imaginary part of the energy is negative (decaying
state) for cases (a) and (c), (d) with upper signs, and is positive (process of a state formation)
for cases (b) and (c), (d) with lower signs.

It is instructive to express equations (B.4) and (B.5) through the logarithmic derivatives

d(z; E ) = z

ψ(z; E )

∂

∂z
ψ(z; E ). (B.7)

After simple algebra we get from equation (B.4)∫ b

a
dz |ψ(z,E )|2 = �

2

2 m

[
1

z

(
d(z; E )− d∗(z; E )

)
ψ(z; E )

∂

∂E
ψ∗(z; E )

− 1

z
|ψ(z; E )|2 ∂

∂E
d∗(z; E )

] ∣∣∣∣∣
b

a

. (B.8)

Since the integral on the left-hand side is real we can add to the right-hand side its complex
conjugated value and halve it. Then we obtain∫ b

a
dz |ψ(z,E )|2 =

[
lq[ψ(z; E )] Im d(z; E )− �

2

2 m z
|ψ(z; E )|2 ∂

∂E
Re d(z; E )

] ∣∣∣∣∣
b

a

= lq[ψ(b; E )] Im d(b; E )− lq[ψ(a; E )] Im d(a; E )

+ �
2

2 m

[
|ψ(a; E )|2 1

a

∂

∂E
Re d(a; E )− |ψ(b; E )|2 1

b

∂

∂E
Re d(b; E )

]
,

(B.9)

where we introduced the characteristic quantum length characterizing a stationary wave
function ψ(z; E ):

lq[ψ(z; E )] = i�2

2 m z

(
ψ(z; E )

∂

∂E
ψ∗(z; E )− ψ∗(z; E )

∂

∂E
ψ(z; E )

)
. (B.10)

For example, for the plane wave this quantity is the de Broglie wavelength lq[exp(i k z/�)] =
�/k. For the wave function (3.1) and z > L/2 we find lq[T (E ) exp(i k z/�)] =
(�/k)|T (E )|2(1 + k

z m �
d

dEφT(E )
)
.

From equation (B.5) straightforwardly follows

−2 Im E
∫ b

a
dz |ψ(z,E )|2 = �

2

m b
|ψ(b; E )|2 Im d(b; E )− �

2

m a
|ψ(a; E )|2 Im d(a; E ). (B.11)

Appendix C. Asymptotic centroids of the wave packets

Let us perform the derivation of equation (3.53). Substituting equation (3.49) in the standard
definition of the average coordinate we have

z̄(as)
I (t) =

∫ +∞

−∞
dz z|�I(z, t)|2

=
∫ +∞

0

dk

2π�

∫ +∞

0

dk′

2π�
ϕ(k)ϕ∗(k′) ei(E ′−E ) t/�

∫ +∞

−∞
dz z e+i (k−k′) z/�, (C.1)

where E = k2/2m and E ′ = k′2/2m. Changing variables to Q = (k + k′)/2 and q = k − k′

with dkdk′ = dQdq we write

z̄(as)
I (t) =

∫ +∞

0

dQ

2π�

∫ +∞

−∞

dq

2π�
ϕ(Q + q/2)ϕ∗(Q − q/2) e−i Q q

m
t
�

∫ +∞

−∞
dz z e+i q z/�. (C.2)
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Using ∫ +∞

−∞
dz zne+i q z/� = (−i�)n (2π�)

dn

dqn
δ(q) (C.3)

after integration by parts we obtain

z̄(as)
I (t) = i

∫ +∞

0

dQ

2π

{1

2
ϕ′(Q)ϕ∗(Q)− 1

2
ϕ(Q)ϕ′∗(Q)− i

Q

m

t

�
|ϕ(Q)|2

}
. (C.4)

Introducing the phase of the momentum profile function ξ (k) as ϕ(k) = |ϕ(k)|ei ξ (k) after the
replacement Q → k we cast the integral in the form

z̄(as)
I (t) =

∫ +∞

0

dk

2π�

(
− � ξ ′(k)+ k

m
t
)
|ϕ(k)|2 (C.5)

and recover equation (3.53).
Similarly to the above we derive

[z(as)
I (t)]2 =

∫ +∞

−∞
dz z2|�I(z, t)|2

= − �
2
∫ +∞

0

dQ

2π�

∫ +∞

−∞
dqϕ(Q + q/2)ϕ∗(Q − q/2) e−i Q q

m
t
�

d2

dq2
δ(q). (C.6)

The integration by parts over q after the replacement Q → k yields

[z(as)
I (t)]2 = − �

2
∫ +∞

0

dk

2π�

{
1

4
ϕ′′(k)ϕ∗(k)+ 1

4
ϕ(k) ϕ′′∗(k)− 1

2
ϕ′(k)ϕ′∗(k)

− i
k

m

t

�

(
ϕ′(k)ϕ∗(k)− ϕ(k)ϕ′∗(k)

)− k2

m2

t2

�2
|ϕ(k)|2

}
= �

4π
|ϕ(0)|′|ϕ(0)| +

∫ +∞

0

dk

2π�

{
�

2 (|ϕ(k)|′)2 +
(

�ξ ′(k)− k

m
t

)2

|ϕ(k)|2
}

(C.7)

and thereby equation (3.54) is recovered.
The results (C.3) and (C.6) can be generalized as follows∫ +∞

−∞
dz zn|�I(z, t)|2 = (−i�)n

∫ +∞

0

dQ

2π�

∫ +∞

−∞
dqϕ(Q + q/2)ϕ∗(Q − q/2) e−i Q q

m
t
�

dn

dqn
δ(q).

(C.8)

Now we turn to the derivation of the asymptotic centroid evolution for the transmitted
packets (equation (3.105)). To evaluate the integrals of the type

∫ +∞
−∞ dz zn|�T(z, t)|2 we can

use equation (C.8) with the only replacement ϕ → ϕ T . Then for the normalization integral
we immediately obtain∫ +∞

−∞
dz |�T(z, t)|2 =

∫ +∞

0

dk

2π�
|ϕ(k)|2|T (k)|2 = 〈T (E )〉k. (C.9)

Now we adopt equation (C.4) and write∫ +∞

−∞
dz z|�T(z, t)|2 = i�

∫ +∞

0

dk

2π�

{
1

2
ϕ∗(k)T ∗(k)

d

dk

(
ϕ(k)T (k)

)
− 1

2
ϕ(k)T (k)

d

dk

(
ϕ∗(k)T ∗(k)

)− i
k

m

t

�
|ϕ(k)|2|T (k)|2

}
. (C.10)

Substituting ϕ(k)T (k) = |ϕ(k)| |T (k)|ei ξ (k)+iφT(k) we find∫ +∞

−∞
dz z|�T(z, t)|2 =

∫ +∞

0

dk

2π�

{
− � ξ ′(k)− �φ′

T(k)+
k

m
t

}
|ϕ(k)|2|T (k)|2. (C.11)

Dividing equation (C.11) by equation (C.9) we recover the first equation in (3.105).
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To get similar expressions for the reflected packet we have to replace ϕ → ϕ R in equation
(C.8) and also change q → −q. The corresponding result in (3.105) follows in full analogy to
equation (C.9), and (C.11) with the change of the overall sign in the latter.

To calculate the width of the transmitted packet that appeared in equation (3.103) we need
to calculate [z(as)

T (t)]2. Making the replacement ϕ → ϕ T in equation (C.7) and taking into
account that T (0) = 0 we can write

[z(as)
T (t)]2 = 1

〈|T (k)|2〉k

〈
�

2 (|T (k)|′ + |T (k)||ϕ(k)|/|ϕ(k)|′)2

+
(

�ξ ′(k)+ �φ′
T(k) − k

m
t

)2

|T (k)|2
〉

k

=
〈
�

2

[
d

dk
log(|ϕ(k)||T (k)|)

]2
〉

k,T

+
〈(

�ξ ′(k)+ �φ′
T(k)−

k

m
t

)2
〉

k,T

. (C.12)

Here in the last equality we use the definition of the average (3.106). For the reflected packet
we can write by analogy

[z(as)
R (t)]2 =

〈
�

2

[
d

dk
log(|ϕ(k)||R(k)|)

]2
〉

k,R

+
〈(

�ξ ′(k)+ �φ′
R(k)−

k

m
t

)2
〉

k,R

. (C.13)

Appendix D. Relations for the sojourn time

Let us perform derivation of the relation between the sojourn time and the dwell time (3.93).
Using equation (3.48) and performing the integration over time we find

tsoj(a, b) =
∫ +∞

−∞
dt
∫ b

a
dz|�(z, t)|2

=
∫ +∞

0

dk

2π�

∫ +∞

0

dk′

2π�
ϕ(k)ϕ∗(k′)

∫ b

a
dzψ(z,E )ψ∗(z,E ′)(2π�)δ(E − E ′),

where we used that E = k2/2m and E ′ = k′2/2m. Taking the integral over momentum k′ we
obtain

tsoj(a, b) =
∫ +∞

0

dk

2π�
|ϕ(k)|2 m

k

∫ b

a
dx|ψ(x,E )|2, (D.1)

thus equation (3.93) is recovered.
Now let us derive equation (3.96). Using the definitions of the wave function on the left

and right sides of the barrier (Equations (3.49), (3.76) and (3.77)) we can write the current as
follows

j(z � L/2, t) = i�

2 m

(
�T(z, t)∇z�

∗
T(z, t)−�∗

T(z, t)∇z�T(T, t)

)
= 1

2m

∫ ∞

0

dk

2π�

∫ ∞

0

dk′

2π�
ϕ(k)ϕ∗(k′)T (E )T ∗(E ′) ei(E ′−E )t/� e+i (k−k′)z/�(k′ +k),

j(z � −L/2, t) = i�

2 m
([�I(z, t)+�R(z, t)]∇[�∗

I (z, t)+�∗
R(z, t)]

− [�∗
I (z, t)+�∗

R(z, t)]∇[�I(z, t)+�R(z, t)])

= 1

2 m

∫ ∞

0

dk

2π�

∫ ∞

0

dk′

2π�
ϕ(k) ϕ∗(k′) ei (E ′−E ) t/�

× {(k′ + k)[ei (k−k′ ) x/� − R∗(E ′)R(E ) e−i (k−k′ ) k/�]

+ (k − k′)[R∗(E ′) e+i (k′+k) z/� − R(E ) e−i (k+k′) z/�]}. (D.2)
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Performing the replacement of momenta k = Q + 1
2 q, k′ = Q − 1

2 q, dk dk′ = dQ dq and using
that E ′ − E = 1

2m

[
(Q − 1

2 q)2 − (Q + 1
2 q)2

] = Q q/m, we find

j(z � L/2, t) = 1

2 m

∫ ∞

0

dQ

2π�

∫ ∞

−∞

dq

2π�
ϕ

(
Q + 1

2
q

)
ϕ∗
(

Q − 1

2
q

)
×T (EQ+q/2)T ∗(EQ−q/2) e−i Q q t/m�e+i q z/� 2 Q,

j(z � −L/2, t) = 1

2 m

∫ ∞

0

dQ

2π�

∫ ∞

−∞

dq

2π�
ϕ

(
Q + 1

2
q

)
ϕ∗
(

Q − 1

2
q

)
ei Q q t/m�

×{2Q[ei q x/� − R∗(EQ−q/2)R(EQ+q/2) e−i q z/�]

+ q[R∗(EQ−q/2) e+i 2Q x/� − R(EQ+q/2) e−i 2Q x/�]}. (D.3)

Integrating over the time in equation (3.95) with the help of expression∫ +∞

−∞
dt
∫ t

−∞
dt ′ ei Q q t ′/m� = 2π

i m2
�

2

Q2 q
δ(q) (D.4)

we derive∫ +∞

−∞
dt
∫ t

−∞
dt ′( j(L/2, t ′)− j(−L/2, t ′))

=
∫ ∞

0

dQ

2π�

∫ ∞

−∞
dqϕ(Q + 1

2
q) ϕ∗

(
Q − 1

2
q

)
i m�

Q
δ(q)

×
[

1

q
(T (EQ+q/2)T ∗(EQ−q/2)+ R(EQ+q/2)R∗(EQ−q/2)− e−i q L/�) e+i q L

2�

− 1

2Q
(R∗(EQ−q/2) e−i 2Q L/2� − R(EQ+q/2) e+i 2Q L/2�)

]
.

Taking into account that the expression in the squared bracket at the term with 1/q vanishes
for q → 0, so that only the first derivative of this expression contributes, we obtain∫ +∞

−∞
dt
∫ t

−∞
dt ′( j(L/2, t ′)− j(−L/2, t ′))

= −
∫ ∞

0

dQ

2π
|ϕ(Q)|2

[
|T (EQ)|2 �

∂φT(EQ)

∂E
+ |R(EQ)|2 �

∂φR(EQ)

∂E

+ m L

Q
+ � m

Q2
Im
(
R(EQ) eiQ L/�

)]
.

Substituting here definitions of the phasesφR,T from equation (3.9), we recover equation (3.96).

Appendix E. Matrix notation

For any two-point function (5.9) (e.g., for the Green’s function or the self-energy), the contour
values [35] are defined as,

F j
i (x, y) = σikF k j(x, y), F i

j(x, y) = F ik(x, y)σki,

Fi j(x, y) = σikσ jlF kl(x, y), σ k
i = δik (E.1)

on the different branches of the contour, i, k mean + or −. Summation over repeated indices
is implied. The contour folding of contour two-point functions, e.g. in Dyson equations, are

H(xi, yk) = Hik(x, y) =
∫

C
dzCF (xi, zC)G(zC, yk) =

∫
dzF i

j(x, z)G
jk(z, y) (E.2)

in the matrix notation.
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Due to the change of operator ordering, genuine multi-point functions are, in general,
discontinuous when two contour coordinates become identical. In particular, two-point
functions like iF (x, y) = 〈TCÂ(x)B̂(y)

〉
become

iF (x, y) =
(

iF−−(x, y) iF−+(x, y)
iF+−(x, y) iF++(x, y)

)
=
(〈
T Â(x)B̂(y)

〉 ∓ 〈B̂(y)Â(x)〉〈
Â(x)B̂(y)

〉 〈
T −1Â(x)B̂(y)

〉) , (E.3)

where T and T −1 are the usual time and anti-time ordering operators. Equation (E.3) implies
the following relations among non-equilibrium and usual retarded and advanced functions

FR(x, y) = F−−(x, y)− F−+(x, y) = F+−(x, y)− F++(x, y)
:=  (x0 − y0)

(
F+−(x, y)− F−+(x, y)

)
,

FA(x, y) = F−−(x, y)− F+−(x, y) = F−+(x, y)− F++(x, y)
:= − (y0 − x0)

(
F+−(x, y)− F−+(x, y)

)
, (E.4)

where  (x0 − y0) is the step function of the time difference. The rules for the co-contour
functions F−− etc follow from equation (5.9). Complex conjugation implies(

iF−+(x, y)
)∗ = iF−+(y, x) ⇒ iF−+(X, p) = real,(

iF+−(x, y)
)∗ = iF+−(y, x) ⇒ iF+−(X, p) = real,(

iF−−(x, y)
)∗ = iF++(y, x) ⇒ (

iF−−(X, p)
)∗ = iF++(X, p),(

FR(x, y)
)∗ = FA(y, x) ⇒ (

FR(X, p)
)∗ = FA(X, p), (E.5)

where the right parts specify the corresponding properties in the Wigner representation; see
section 6.1.

In thermal equilibrium all the Green’s functions are expressed through the retarded and
advanced Green’s functions

Gik(p) =
(

GR(p)± inA(p) ±inA(p)

−i [1 ∓ n] A(p) −GA(p)∓ inA(p)

)
, i, k = {+,−}, (E.6)

and the self-energies take a similar form

�ik(p) =
(
�R(p)± in�(p) ∓in�(p)

i [1 ∓ n]�(p) −�A(p)± in�(p)

)
, (E.7)

where

n(ε) = [exp(ε/T )± 1]−1 (E.8)

are thermal Fermi/Bose–Einstein occupations.

Appendix F. H theorem and the minimum of entropy production

Reference [35] presented arguments for H theorem and could prove it for some specific
examples, e.g. for the �-derivable theories for� diagrams with two vertices. the equation for
the entropy flow for all three forms of the kinetic equation, the BM, KB and non-local form,
is as follows:

∂μSμ = −H, (F.1)

where now in the left-hand side Sμ is either SμBMM, or SμKB, or SμNL, the latter quantity is up to first
gradients the same as for the KB choice. The memory contribution can be also incorporated
as an additional term ∂μSμmem in the left-hand side.
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For the BM and the KB forms of the kinetic equation we multiply the kinetic equation by
ln 1∓ f

f . Using the multi-particle process decomposition [35] we arrive at the relation

H = −Tr
∫

d4 p

(2π)4
ln

1 ∓ f

f
C = −Tr

∑
m,m̃

1

2

∫
d4 p1

(2π)4
· · · d4 pm

(2π)4
d4 p̃1

(2π)4
· · · d4 p̃m̃

(2π)4

× [A1 f1 · · · Am fmA′
1(1 ∓ f ′

1) · · · A′
m̃(1 ∓ f ′

m̃)

− A1(1 ∓ f1) · · · Am(1 ∓ fm)A
′
1 f ′

1 · · · A′
m̃ f ′

m̃]

× ln
f1 · · · fm(1 ∓ f ′

1) · · · (1 ∓ f ′
m̃)

(1 ∓ f1) · · · (1 ∓ fm) f ′
1 · · · f ′

m̃

Rm,m̃ δ
4

(
m∑

i=1

pi −
m̃∑

i=1

p̃i

)
. (F.2)

Here we assume different flavors and intrinsic quantum numbers to be absorbed in the momenta
pi and p̃i.

In the case when all rates Rm,m̃ are non-negative, i.e. Rm,m̃ � 0, this expression is non-
negative, since (x − y)ln(x/y) � 0 for any positive x and y. In particular, Rm,m̃ � 0 takes
place for all�-functionals up to two vertices. Then the divergence of sμ is non-negative which
proves the H theorem in this case.

For the non-local form of the kinetic equation we multiply the latter by ln 1∓ f shift

f shift and get

Hshift = −Tr
∫

d4 p

(2π)4
ln

1 ∓ f shift

f shift

ACshift

Ashift
� −Tr

∫
d4 p

(2π)4
ln

1 ∓ f shift

f shift
Cshift

instead of H. Thus equation (F.2) continues to hold but now in shifted variables.
Assume that the system is closed, i.e. there is no entropy flow through the volume

boundary. Then[
d
∫

S0 d3X

dt

]
l.eq

= 0,

[
d2
∫

S0 d3X

dt2

]
l.eq

= 0, (F.3)

since both the curved-bracket term and the ln-term in (F.2) are zero in the local equilibrium
that results in zero of the function and its derivative.

Assuming the validity of the H theorem (the entropy should be maximum in the local
equilibrium) we have(

d3
∫

S0 d3X

dt3

)
l.eq

� 0. (F.4)

Thus we argue for the principle of the minimum of the entropy production (previously
postulated by Prigogine; see [150])12 now related to the generalized kinetic equation, provided
the H theorem is satisfied.
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