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a,dAtomic Institute, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Vienna, Austria
bPhysics and Astronomy Dept., San Francisco State University, San Francisco, CA 94132, USA
cAmerican Physical Society, One Research Road, Box 9000, Ridge, NY 11961-9000, USA
eInstitute of Physics, Slovak Academy of Sciences, SK–845 11 Bratislava, Slovakia

The center vortex model has been proposed as an explanation of confinement in non-Abelian gauge theories.
Low-lying Dirac eigenmodes are related to the chiral properties of a gauge configuration. We investigate the
correlation of center vortices and Dirac eigenmodes in SU(2) lattice gauge theory.

1 Introduction

Lattice QCD (LQCD) is the main tool for probing QCD in the non-perturbative regime, where QCD predicts
quark confinement and chiral symmetry breaking. We work with lattices generated by Monte Carlo simulation of
the tadpole improved Lüscher-Weisz pure-gauge action, mainly at coupling β = 3.3 (lattice spacing a = 0.15 fm)
for the SU(2) gauge group, which is very appropriate to study the mechanism and relation of these phenomena.
Center-Projection is performed by Direct Maximal Center Gauge (adjoint Landau gauge), maximizing the
squared trace of link variables Uµ(x) by the over-relaxation method. The mapping to link variables on the center-
projected (or “vortex-only”) lattice, for the SU(2) gauge group, is given by Uµ(x) → Zµ(x) = signTr[Uµ(x)]
and the link variables on vortex-removed lattices are defined as U ′

µ(x) = Zµ(x)Uµ(x).

2 Center vortex picture of confinement

Center vortices, quantized magnetic flux-lines, compress the gluonic flux into tubes and cause a linearly rising
potential at large separations. This confinement mechanism was tested in many ways, for a detailed discussion
see Ref. [1]. In Fig. 1 we show vortex limited Wilson loops Wn, with n vortices piercing the Wilson loop. As the
loop area increases the Wilson loop approaches the limit (−1)nW0. Fig. 2 shows the effect of vortex removal on
the Creutz ratio, the string tension vanishes whereas for the center-projected (“vortex only”) configuration the
Creutz ratio approaches the asymptotic string tension. Removing vortices also restores chiral symmetry [2], i.e.
the chiral condensate vanishes, which is closely related to low-lying Dirac eigenmodes.
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Figure 1. Ratios of vortex limited Wilson loops
Wn on 204 lattice at β = 3.1.
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Figure 2. Creutz ratios at β = 3.3 for full,
center-projected and vortex-removed 204 lattices.
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2 Roman Höllwieser

-0.1

 0

 0.1

-0.1

 0

 0.1

-0.1

 0

 0.1

Im
λ

original (full) center-projected vortex removed

Figure 3. Dirac spectra of asqtad staggered fermions on a 204 lattice at β = 3.3 for full, center-projected and
vortex-removed configurations.

3 Dirac eigenmodes and chiral symmetry breaking

The chiral condensate 〈ψψ〉 is an order parameter for chiral symmetry breaking. According to the Banks-Casher
relation [3] ψ̄ψ = πρ(0)/V , the chiral condensate is directly proportional to the density of near zero modes ρ(0).
Fig. 3 shows the first twenty eigenvalue pairs of the asqtad staggered Dirac operator [4] on a 204 lattice using
antiperiodic boundary conditions at β = 3.3 for full, center-projected and vortex removed configurations. There
is a clear gap in the vortex removed spectrum, indicating restored chiral symmetry, whereas in the vortex
only case, the chiral condensate seems to be even enhanced in comparison to the original configuration. The
vortex excitations of the center-projected lattice carry not only the information about confinement, but are also
responsible for chiral symmetry breaking via the Banks-Casher relation. (see also [5, 6, 7])

4 Dirac eigenmode density and vortex correlations

Next we investigate the eigenmode density ρλ(x) = ψ†
λ(x)ψλ(x), where ψλ(x) is the normalized (

∑
x ρλ(x) = 1)

eigenvector of the Dirac operator corresponding to the eigenvalue λ. We plot representative maximum density
peaks for overlap and asqtad staggered eigenmodes on full configurations in Fig. 4 and for asqtad staggered
eigenmodes on center-projected configurations in Fig. 5a. The overlap Dirac operator [8] does not provide
reliable results on the singular gauge fields of center-projected configurations. In all other cases the figures show
clearly sharp peaks in point-like regions of the lattice volume.
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Figure 4. Maximum density peaks (center) of first a) asqtad staggered and b) overlap Dirac eigenmode on a
full 204- resp. 164-lattice configuration, with upper (above) and lower (below) z-slices of the same t-slice.
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Figure 5. a) Maximum density peaks (center) of first asqtad staggered Dirac eigenmode on a center-projected
204-lattice configuration, with upper (above) and lower (below) z-slices of the same t-slice. b) Peaks correlate
with topological charge sources, vortex intersection (above) and writhing points (below).

In Fig. 6 we present the vortex density in dependence of the distance (in lattice units a) from these eigenmode
density peaks and find strong correlations between the eigenmode density and vortex structures. These dense
vortex structures at the eigenmode density peaks are known to be sources of topological charge from the picture
advocated by Engelhardt and Reinhardt [9], shown in Fig. 5b.
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Figure 6. Vortex density in dependence of the distance from maximum Dirac eigenmode density peaks.

Finally, we directly correlate Dirac eigenmodes of different fermion operators by comparing the position
of their eigenmode density peaks. In Fig. 7 we present a representative example of the eigenvalue spectra of
overlap and asqtad staggered fermions on a full and the corresponding center-projected 164-lattice configuration.
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We draw a line between two eigenvalues when their eigenmode density peaks match exactly. This is a rather
interesting result since we find that the different eigenmode spectra do not provide the same physical contents
at comparable energy levels, i.e. the correlations mix between different eigenvalues. The overlap zero mode for
example appears as second center-projected and fourteenth full asqtad staggered mode.
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Figure 7. Dirac eigenvalue spectra on a 164-lattice configuration with eigenmode correlations (connection
lines). For better presentation we just plot the absolute value of the overlap eigenvalues and not the Ginsparg-
Wilson circle, which in fact makes no difference for the low-lying modes.

5 Conclusions

We presented significant results that the center vortex model not only explains confinement and topological
charge, but also the breaking of chiral symmetry. We also find strong correlations between Dirac eigenmode,
vortex and topological charge densities. These results were published in [10]. Nevertheless, the final result
shows that different fermion realizations on the lattice may lead to slightly different results.
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